Differences in the conformation of the pleckstrin homology (PH) domain of switch-associated protein-70 (SWAP-70) in solution and at the lipid bilayer membrane surface were examined using CD, fluorescence and NMR spectroscopy. Intracellular relocalization of SWAP-70 from the cytoplasm to the plasma membrane and then to the nucleus is associated with its cellular functions. The PH domain of SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal, which localize SWAP-70 to the plasma membrane and nucleus, respectively. CD and fluorescence spectra showed that a significant conformational alteration involving formation of disordered structure occurs when the PH domain binds to d-myo-phosphatidylinositol 3,4,5-trisphosphate or d-myo-phosphatidylinositol 4,5-bisphosphate embedded in lipid bilayer vesicles. NMR spectra indicate that Ala and Trp residues located in the C-terminal alpha-helix of the PH domain undergo conformational alterations to form a disordered structure at the vesicle surface. These conformational alterations were not induced by association with inositol 1,3,4,5-tetrakisphosphate in solution or coexistence of phosphatidylcholine vesicles. Interaction with the plane of the lipid bilayer via association with the phosphoinositides is required for the unfolding of the C-terminal alpha-helix of the PH domain. The unwinding of the C-terminal alpha-helix could regulate the functions of SWAP-70 at the plasma membrane surface.