Iterative reconstruction of pinhole SPECT projection data acquired in preclinical animal imaging research benefits from modeling physical parameters of the imaging process. In this study, we developed a ray-driven system model that accounts for detector blur, the geometric response and edge penetration of the pinhole. GATE 2.2.0/GEANT 4 Monte Carlo simulations utilizing a tungsten knife-edge pinhole with an aperture diameter of 2 mm were applied to measure the pinhole point spread function (PSF) and to generate pinhole SPECT projection images of 2 different resolution phantoms (2.0 mm and 1.8 mm). The new Monte Carlo based PSF with edge penetration was compared to an ideal pinhole model without edge penetration. To conserve memory, the ray-driven system matrix was computed for one angle and rotation was performed by interpolating the radiotracer distribution within the object space. Detector symmetry and a bitwise incremental storage scheme were utilized for further reduction of memory requirements. Two system setups with a magnification of 7.2x and 2x were studied. Reconstruction results show an improvement in image quality and reconstruction resolution for the new pinhole PSF model. In the low magnification system operated at its resolution limits these improvements are more pronounced than in the high magnification system. The newly implemented ray-driven reconstruction method has great flexibility and offers to be a platform for further improvements such as non-uniform attenuation and scatter correction, and integration of detector misalignments in the system matrix.