國家衛生研究院 NHRI:Item 3990099045/4507
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 858825      Online Users : 809
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/4507


    Title: Potential usage of liposome-encapsulated phosphor for in vivo imaging of tissue oxygenation
    Authors: Lo, L;Ho, J;Chang, Y;Chang, C;Yang, C
    Contributors: Division of Medical Engineering Research
    Abstract: Oxygen-dependent quenching of phosphorescence can provide a quantitative measurement with high temporal resolution of tissue oxygenation in vivo. It is a real-time optical means for prognosis of diseases where the oxygen concentration is essential. Phosphorescence quenching is a non-invasive methodology, otherwise no more than minimally invasive as the phosphor is necessarily introduced into vasculature prior to the measurement. Oxyphor R2, a dendritic phosphor with two-layer of glutamates, is a suitable phosphor for oxygen measurements owing to its high water solubility. We used a frequency-domain, phase modulation based instrument to calibrate Oxyphor R2. The acquired quenching constant (k<sub>Q</sub>) and lifetime at zero oxygen (τ°) were consistent with those calibrated from conventional time-domain instrument. Administered with Oxyphor R2, the rat hepatic oxygen distributions were imaged throughout the course of ischemia and reperfusion. After 5 min ischemia and subsequent 20 min reperfusion, distinct ischemic areas on the hepatic tissue were observed. In order to extend the application of in vivo oxygen imaging using phosphorescence quenching by minimizing the possible immunoresponse induced by phosphor, we are the first to co-synthesize the dipalmitoylphosphatidylglycerol (DPPG)-rich liposome with Oxyphor R2 to generate the liposome-encapsulated Oxyphor R2. Its calibration using the frequency domain measurement displayed higher quenching constant and shorter lifetime at zero oxygen (k<sub>Q</sub> = 1186 mmHg<sup>-1</sup> sec<sup>-1</sup>; τ° = 150 μsec) comparing to original Oxyphor R2 (k<sub>Q</sub> = 438 mmHg <sup>-1</sup> sec<sup>-1</sup>; τ° = 630 μsec). It implicated that the liposome-encapsulated Oxyphor R2 designed to neutralize the immunoresponse could be further applied to measure the tissue oxygenation in vivo, especially those with low oxygen concentration such as tumor.
    Date: 2004-08
    Relation: Biomedical Engineering - Applications, Basis and Communications. 2004 Aug;16(4):224-232.
    Link to: http://www.worldscinet.com/bme/16/1604/S10162372041604.html
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=8644235831
    Appears in Collections:[Leu-Wei Lo] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    SCP8644235831.pdf1420KbAdobe PDF330View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback