國家衛生研究院 NHRI:Item 3990099045/12640
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 956559      線上人數 : 857
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12640


    題名: PM2.5 exposure of various microenvironments in a community: Characteristics and applications
    作者: Hsu, WT;Chen, JL;Candice Lung, SC;Chen, YC
    貢獻者: National Institute of Environmental Health Sciences
    摘要: While the measurement of particulate matter (PM) with a diameter of less than 2.5 μm (PM2.5) has been conducted for personal exposure assessment, it remains unclear how models that integrate microenvironmental levels with resolved activity and location information predict personal exposure to PM. We comprehensively investigated PM2.5 concentrations in various microenvironments and estimated personal exposure stratified by the microenvironment. A variety of microenvironments (>200 places and locations, divided into 23 components according to indoor, outdoor, and transit modes) in a community were selected to characterize PM2.5 concentrations. Infiltration factors calculated from microenvironmental/central-site station (M/S) monitoring campaigns with time-activity patterns were used to estimate time-weighted exposure to PM2.5 for university students. We evaluated exposures using a four-stage modeling approach and quantified the performance of each component. It was found that the SidePak monitor overestimated the concentration by 3.5 times as compared with the filter-based measurements. Higher mean concentrations of PM2.5 were observed in the Taoist temple and night market microenvironments; in contrast, lower concentrations were observed in air-conditioned offices and car microenvironments. While the exposure model incorporating detailed time-location information and infiltration factors achieved the highest prediction (R2 = 0.49) of personal exposure to PM2.5, the use of indoor, outdoor, and transit components for modeling also generated a consistent result (R2 = 0.44).
    日期: 2020-08
    關聯: Environmental Pollution. 2020 Aug;263(Part A):Article number 114522.
    Link to: http://dx.doi.org/10.1016/j.envpol.2020.114522
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0269-7491&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000539426400014
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85083013486
    顯示於類別:[陳裕政] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85083013486.pdf867KbAdobe PDF309檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋