國家衛生研究院 NHRI:Item 3990099045/12640
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 915462      在线人数 : 1262
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12640


    题名: PM2.5 exposure of various microenvironments in a community: Characteristics and applications
    作者: Hsu, WT;Chen, JL;Candice Lung, SC;Chen, YC
    贡献者: National Institute of Environmental Health Sciences
    摘要: While the measurement of particulate matter (PM) with a diameter of less than 2.5 μm (PM2.5) has been conducted for personal exposure assessment, it remains unclear how models that integrate microenvironmental levels with resolved activity and location information predict personal exposure to PM. We comprehensively investigated PM2.5 concentrations in various microenvironments and estimated personal exposure stratified by the microenvironment. A variety of microenvironments (>200 places and locations, divided into 23 components according to indoor, outdoor, and transit modes) in a community were selected to characterize PM2.5 concentrations. Infiltration factors calculated from microenvironmental/central-site station (M/S) monitoring campaigns with time-activity patterns were used to estimate time-weighted exposure to PM2.5 for university students. We evaluated exposures using a four-stage modeling approach and quantified the performance of each component. It was found that the SidePak monitor overestimated the concentration by 3.5 times as compared with the filter-based measurements. Higher mean concentrations of PM2.5 were observed in the Taoist temple and night market microenvironments; in contrast, lower concentrations were observed in air-conditioned offices and car microenvironments. While the exposure model incorporating detailed time-location information and infiltration factors achieved the highest prediction (R2 = 0.49) of personal exposure to PM2.5, the use of indoor, outdoor, and transit components for modeling also generated a consistent result (R2 = 0.44).
    日期: 2020-08
    關聯: Environmental Pollution. 2020 Aug;263(Part A):Article number 114522.
    Link to: http://dx.doi.org/10.1016/j.envpol.2020.114522
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0269-7491&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000539426400014
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85083013486
    显示于类别:[陳裕政] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85083013486.pdf867KbAdobe PDF309检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈