國家衛生研究院 NHRI:Item 3990099045/9774
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 966371      線上人數 : 911
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/9774


    題名: Activation of NRF2/ABCC1 axis confers resistance to topoisomerase II poisons in human oral malignancies
    作者: Chen, HH;Huang, YW;Cheng, TT;Lai, WY;Chang, JY;Kuo, CC
    貢獻者: National Institute of Cancer Research
    摘要: Etoposide (VP-16), a DNA topoisomerase II poison, is an important clinical used chemotherapeutic agent for human oral malignancies. An etoposide-resistant cell line, KB-7D, has been generated from human oral epidermoid carcinoma KB cells to investigate the mechanism of action of drug resistance in oral malignancies. Previous studies revealed that KB-7D cells were approximately 50-fold more resistant to etoposide as compared to parental KB cells. It also exhibited cross-resistant to chemotherapeutic agents such as doxorubicin. This multi-drug resistance may be caused by the over-expression of ABCC1, leading to the decrease in drug accumulation in KB-7D cells. Our current work continues the effort to investigate the mechanism of regulation of ABCC1 expression in the etoposide-derived drug resistant cells and subsequently find the molecular target that can be used to restore therapeutic efficacy in chemo-refratory cancers. Down-regulation of ABCC1 by RNA interference and a selective inhibitor, MK-571, significantly enhanced the chemosensitivity to etoposide and doxorubicin in KB and KB-7D cells. To further determine the possible transcriptional factors that regulate the ABCC1 transactivation, the promoter region of ABCC1 was examined. A NRF2 binding sequence, antioxidant responsive element (ARE), has been found locate in the ABCC1 promoter at -470 to -458 upstream from the transcription start site. Real-time RT-PCR and Western blot analyses showed that expression of NRF2 mRNA and protein in KB-7D cells was 1.4 to 1.8 folds higher than those expressed in the parental cells. In addition, Chromatin Immunoprecipitation (ChIP) analysis revealed that NRF2 directly targeted to the ARE sequence in the ABCC1 promoter region. Interestingly, down-regulation of NRF2 decreased the expression of ABCC1 and also increased the chemosensitivity of KB-7D cells against selected anti-cancer drugs. In addition, cells incubated with an NRF2 activator, tBHQ, induced nucleus accumulation of NRF2 and over-expression of ABCC1, resulting in the enhancement of drug-resistance against etoposide or doxorubcin in KB and KB-7D cells. In summary, constitutive activation of NRF2-dependent ABCC1 contributed to the causation of chemoresistance in etoposide-derived drug resistant cells. Blockage of ABCC1 expression by manipulation of the NRF2 signaling pathway enhanced the chemotherapeutic efficacy in cells. Therefore, targeting NRF2 may be able to reverse chemoresistance in chemo-refractory oral malignancies. In addition, development of NRF2 inhibitors may be a new strategy to overcome chemoresistance in human cancers.
    日期: 2011-04
    關聯: Cancer Research. 2011 Apr;71:Abstract number 1528.
    Link to: http://dx.doi.org/10.1158/1538-7445.am2011-1528
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0008-5472&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000209701302156
    顯示於類別:[郭靜娟] 會議論文/會議摘要
    [張俊彥] 會議論文/會議摘要

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI000209701302156.pdf21KbAdobe PDF391檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋