國家衛生研究院 NHRI:Item 3990099045/9649
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 860247      線上人數 : 447
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/9649


    題名: HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity
    其他題名: HIF-1-α links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity
    作者: Kuo, CY;Cheng, CT;Hou, P;Lin, YP;Ma, H;Chung, Y;Chi, K;Chen, Y;Li, W;Kung, HJ;Ann, DK
    貢獻者: Institute of Molecular and Genomic Medicine
    摘要: Up-regulation of hypoxia-inducible factor-1alpha (HIF-1alpha), even in normoxia, is a common feature of solid malignancies. However, the mechanisms of increased HIF-1alpha abundance, and its role in regulating breast cancer plasticity are not fully understood. We have previously demonstrated that dimethyl-2-ketoglutarate (DKG), a widely used cell membrane-permeable alpha-ketoglutarate (alpha-KG) analogue, transiently stabilizes HIF-1alpha by inhibiting prolyl hydroxylase 2. Here, we report that breast cancer tumorigenicity can be acquired through prolonged treatment with DKG. Our results indicate that, in response to prolonged DKG treatment, mitochondrial respiration becomes uncoupled, leading to the accumulation of succinate and fumarate in breast cancer cells. Further, we found that an early increase in the oxygen flux rate was accompanied by a delayed enhancement of glycolysis. Together, our results indicate that these events trigger a dynamic enrichment for cells with pluripotent/stem-like cell markers and tumorsphere-forming capacity. Moreover, DKG-mediated metabolic reprogramming results in HIF-1alpha induction and reductive carboxylation pathway activation. Both HIF-1alpha accumulation and the tumor-promoting metabolic state are required for DKG-promoted tumor repopulation capacity in vivo. Our data suggest that mitochondrial adaptation to DKG elevates the ratio of succinate or fumarate to alpha-KG, which in turn stabilizes HIF-1alpha and reprograms breast cancer cells into a stem-like state. Therefore, our results demonstrate that metabolic regulation, with succinate and/or fumarate accumulation, governs the dynamic transition of breast cancer tumorigenic states and we suggest that HIF-1alpha is indispensable for breast cancer tumorigenicity.
    日期: 2016-06
    關聯: Oncotarget. 2016 Jun;7(23):34052-34069.
    Link to: http://dx.doi.org/10.18632/oncotarget.8570
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000377752100041
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84973664240
    顯示於類別:[龔行健] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    PUB27058900.pdf8625KbAdobe PDF546檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋