English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 849032      Online Users : 1525
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/9388


    Title: Ferucarbotran, a carboxydextran-coated superparamagnetic iron oxide nanoparticle, induces endosomal recycling, contributing to cellular and exosomal EGFR overexpression for cancer therapy
    Authors: Chung, TH;Hsiao, JK;Yao, M;Hsu, SC;Liu, HM;Huang, DM
    Contributors: Institute of Biomedical Engineering and Nanomedicine
    Abstract: Superparamagnetic iron oxide (SPIO) nanoparticles have shown many impacts on stem cell attributes when they are used as labels for cellular magnetic resonance imaging (MRI) in the application of stem cell-based therapy. Although it is plausible that iron ions from the lysosomal degradation of SPIO nanoparticles are one of the possible candidates, the mechanisms underlying SPIO-induced cellular responses remain unclear. Herein, the mechanism of ferucarbotran, an ionic SPIO, for the regulation of epidermal growth factor receptor (EGFR) expression in human mesenchymal stem cells (hMSCs) is explored. Ferucarbotran can be internalized into EGFR-localized endosomes, and the endosomal EGFRs in ferucarbotran-labeled hMSCs, compared to unlabeled cells, are mainly localized on the early endosomes and recycling endosomes, but not on late endosomes/lysosomes, and thus escape from lysosomal degradation. Afterward, the recycling endosomal EGFRs are transferred to the cellular membrane and extracellular exosomal vesicles (exosomes) through back fusion and a secretory pathway, respectively, resulting in EGFR-overexpressed hMSCs and EGFR-overexpressed exosomes. Moreover, as EGFR-overexpressed hMSCs, EGFR-overexpressed exosomes can more effectively capture tumorous EGF than native exosomes, which may contribute to the inhibition of tumor growth. This is the first report to find that the SPIO nanoparticles have an impact on stem cell attributes through inducing endosomal recycling instead of them undergoing lysosomal degradation.
    Date: 2015-11
    Relation: RSC Advances. 2015 Nov;5(109):89932-89939.
    Link to: http://dx.doi.org/10.1039/c5ra18810e
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2046-2069&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000364047900066
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84946080995
    Appears in Collections:[黃東明] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP84946080995.pdf614KbAdobe PDF734View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback