Acinetobacter baumannii (Ab) is a global emerging bacterium causing nosocomial infections such as pneumonia, meningitis, bacteremia and soft tissue infections especially in intensive care units. Since Ab is resistant to almost all conventional antibiotics, it is now one of the six top-priorities of the dangerous microorganisms listed by the Infectious Disease Society of America. The development of vaccine is one of the most promising and cost-effective strategies to prevent infections. In this study, we identified potential protective vaccine candidates using reverse vaccinology. We have analyzed fourteen on-line available Ab genome sequences and found 2752 homologous core genes. Using information obtained from immuno-proteomic experiments, published proteomic information and the bioinformatics PSORTb v3.0 software to predict the location of extracellular and/or outer membrane proteins, seventy-seven genes were identified and selected for further studies. After excluding those antigens have been used as vaccine candidates reported by the in silico search-engines of PubMed and Google Scholar, thirteen proteins could potentially be vaccine candidates. We have selected and cloned the genes of three antigens that were further expressed and purified. These antigens were found to be highly immunogenic and conferred partial protection (60%) in a pneumonia animal model. The strategy described in the present study incorporates the advantages of reverse vaccinology, bioinformatics and immuno-proteomic platform technologies and is easy to perform to identify novel immunogens for multi-component vaccines development.
Date:
2015-004
Relation:
Human Vaccines and Immunotherapeutics. 2015 Apr;11(4):1065-1073.