國家衛生研究院 NHRI:Item 3990099045/7613
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 855740      Online Users : 1367
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/7613


    Title: Development of a dual-functional Pt-Fe-HAP magnetic nanoparticles application for chemo-hyperthermia treatment of cancer
    Authors: Tseng, CL;Chang, KC;Yeh, MC;Yang, KC;Tang, TP;Lin, FH
    Contributors: Division of Medical Engineering Research
    Abstract: Lung cancer is a harmful form of cancer; chemotherapy is the main methodology for treating it, despite continuing problems such as severe side effects. For the reduction of side effects, hydroxyapatite (HAP) has been investigated as a drug carriers recently. Moreover, hyperthermia has been reported to be an effective cancer treatment modality. In order to develop an effective agent for lung cancer treatment, dual-functional nanoparticles made from HAP with iron and platinum ions incorporation (Pt-Fe-HAP) were developed for chemo-hyperthermia application. Variant HAP were synthesized and analyzed in this study. The crystallization and chemical composition were examined by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Fe2+ and Pt2+ content was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The biocompatibility and anticancer effects of Pt-Fe-HAP were assessed using 3T3 cells via a WST-1 assay. The effect of hyperthermia on the treatment of Sprague Dawley (SD) rat fibroblast and human lung adenocarcinoma (A549) cells under a magnetic field was evaluated by a lactate dehydrogenase (LDH) assay. Overall, we have determined Pt-Fe-HAP could be prepared by a co-precipitation method with Fe2+/Pt2+ incorporation. The platinum and iron contents were 3.69 wt% and 12.20 wt%, respectively. The hysteresis curves showed that the Pt-Fe-HAP possessed ferromagnetic properties at low magnetic fields. The water temperature could be raised to 46 ?C when the Pt-Fe-HAP suspension was treated in a magnetic field for 6 min. We also confirmed that the extraction solution of Pt-Fe-HAP was nontoxic, but the direct culture of 3T3 cells with these nanoparticles was harmful. Finally, the results of the LDH assay revealed Pt-Fe-HAP was highly toxic to A549 cells after magnetic field treatment under hyperthermia but no damage to fibroblast cells was observed. The magnetic Pt-Fe-HAP nanoparticles show the potential to be a dual agent to treat cancer cells by chemo-hyperthermia therapy.
    Date: 2014-05
    Relation: Ceramics International. 2014 May;40(4):5117-5127.
    Link to: http://dx.doi.org/10.1016/j.ceramint.2013.09.137
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0272-8842&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000332268200003
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84895063145
    Appears in Collections:[Feng-Huei Lin] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    SDO0272884213012406.pdf1452KbAdobe PDF445View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback