國家衛生研究院 NHRI:Item 3990099045/7447
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 914401      在线人数 : 1366
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/7447


    题名: A novel support vector machine-based approach for rare variant detection
    作者: Fang, YH;Chiu, YF
    贡献者: Division of Biostatistics and Bioinformatics
    摘要: Advances in next-generation sequencing technologies have enabled the identification of multiple rare single nucleotide polymorphisms involved in diseases or traits. Several strategies for identifying rare variants that contribute to disease susceptibility have recently been proposed. An important feature of many of these statistical methods is the pooling or collapsing of multiple rare single nucleotide variants to achieve a reasonably high frequency and effect. However, if the pooled rare variants are associated with the trait in different directions, then the pooling may weaken the signal, thereby reducing its statistical power. In the present paper, we propose a backward support vector machine (BSVM)-based variant selection procedure to identify informative disease-associated rare variants. In the selection procedure, the rare variants are weighted and collapsed according to their positive or negative associations with the disease, which may be associated with common variants and rare variants with protective, deleterious, or neutral effects. This nonparametric variant selection procedure is able to account for confounding factors and can also be adopted in other regression frameworks. The results of a simulation study and a data example show that the proposed BSVM approach is more powerful than four other approaches under the considered scenarios, while maintaining valid type I errors.
    日期: 2013-08
    關聯: PLoS ONE. 2013 Aug;8(8):Article number e71114.
    Link to: http://dx.doi.org/10.1371/journal.pone.0071114
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1932-6203&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000323109700078
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84881360109
    显示于类别:[邱燕楓] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PLO2013090102.pdf717KbAdobe PDF418检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈