國家衛生研究院 NHRI:Item 3990099045/7107
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 856852      Online Users : 938
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/7107


    Title: Fibroblast growth factor receptor 2c signaling is required for intestinal cell differentiation in zebrafish
    Authors: Liu, DW;Tsai, SM;Lin, BF;Jiang, YJ;Wang, WP
    Contributors: Institute of Molecular and Genomic Medicine
    Abstract: Background: There are four cell lineages derived from intestinal stem cells that are located at the crypt and villus in the mammalian intestine the non-secretory absorptive enterocytes, and the secretory cells, which include mucous-secreting goblet cells, regulatory peptide-secreting enteroendocrine cells and antimicrobial peptide-secreting Paneth cells. Although fibroblast growth factor (Fgf) signaling is important for cell proliferation and differentiation in various tissues, its role in intestinal differentiation is less well understood. Methodology/Principal Findings: We used a loss of function approach to investigate the importance of Fgf signaling in intestinal cell differentiation in zebrafish; abnormal differentiation of goblet cells was observed when Fgf signaling was inhibited using SU5402 or in the Tg(hsp70ldnfgfr1-EGFP) transgenic line. We identified Fgfr2c as an important receptor for cell differentiation. The number of goblet cells and enteroendocrine cells was reduced in fgfr2c morphants. In addition to secretory cells, enterocyte differentiation was also disrupted in fgfr2c morphants. Furthermore, proliferating cells were increased in the morphants. Interestingly, the loss of fgfr2c expression repressed secretory cell differentiation and increased cell proliferation in the mibta52b mutant that had defective Notch signaling. Conclusions/Significance: In conclusion, we found that Fgfr2c signaling derived from mesenchymal cells is important for regulating the differentiation of zebrafish intestine epithelial cells by promoting cell cycle exit. The results of Fgfr2c knockdown in mibta52b mutants indicated that Fgfr2c signaling is required for intestinal cell differentiation. These findings provide new evidences that Fgf signaling is required for the differentiation of intestinal cells in the zebrafish developing gut.
    Date: 2013-03-06
    Relation: PLoS ONE. 2013 Mar 6;8(3):Article number e58310.
    Link to: http://dx.doi.org/10.1371/journal.pone.0058310
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1932-6203&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000316936100103
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84874598443
    Appears in Collections:[Yun-Jin Jiang] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    PLO2013032002.pdf24656KbAdobe PDF723View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback