國家衛生研究院 NHRI:Item 3990099045/6819
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 855737      線上人數 : 1364
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/6819


    題名: Differential response of epithelial stem cell populations in hair follicles to TGF-beta signaling
    其他題名: Differential response of epithelial stem cell populations in hair follicles to TGF-β signaling
    作者: Lin, HY;Yang, LT
    貢獻者: Institute of Cellular and Systems Medicine
    摘要: Epidermal stem cells residing in different locations in the skin continuously self-renew and differentiate into distinct cell lineages to maintain skin homeostasis during postnatal life. Murine epidermal stem cells located at the bulge region are responsible for replenishing the hair lineage, while the stem cells at the isthmus regenerate interfollicular epidermis and sebaceous glands. In vitro cell culture and In vivo animal studies have implicated TGF-β signaling in the maintenance of epidermal and hair cycle homeostasis. Here, we employed a triple transgenic animal model that utilizes a combined Cre/loxP and rtTA/TRE system to allow inducible and reversible inhibition of TGF-β signaling in hair follicle lineages and suprabasal layer of the epidermis. Using this animal model, we have analyzed the role of TGF-β signaling in distinct phases of the hair cycle. Transient abrogation of TGF-β signaling does not prevent catagen progression; however, it induces aberrant proliferation and differentiation of isthmus stem cells to epidermis and sebocyte lineages and a blockade in anagen re-entry as well as results in an incomplete hair shaft development. Moreover, ablation of TGF-β signaling during anagen leads to increased apoptosis in the secondary hair germ and bulb matrix cells. Blocking of TGF-β signaling in bulge stem cell cultures abolishes their colony-forming ability, suggesting that TGF-β signaling is required for the maintenance of bulge stem cells. At the molecular level, inhibition of TGF-β signaling results in a decrease in both Lrig1-expressing isthmus stem cells and Lrg5-expressing bulge stem cells, which may account for the phenotypes seen in our animal model. These data strongly suggest that TGF-β signaling plays an important role in regulating the proliferation, differentiation, and apoptosis of distinct epithelial stem cell populations in hair follicles.
    日期: 2013-01
    關聯: Developmental Biology. 2013 Jan;373(2):394-406.
    Link to: http://dx.doi.org/10.1016/j.ydbio.2012.10.021
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0012-1606&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000313381200015
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84871694377
    顯示於類別:[楊良棟] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SDO0012160612005787.pdf3138KbAdobe PDF823檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋