|
English
|
正體中文
|
简体中文
|
Items with full text/Total items : 12145/12927 (94%)
Visitors : 912159
Online Users : 1139
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
http://ir.nhri.org.tw/handle/3990099045/6428
|
Title: | Atmospheric oxygen inhibits growth and differentiation of marrow-derived mouse mesenchymal stem cells via a p53-dependent mechanism: Implications for long-term culture expansion |
Authors: | Boregowda, SV;Krishnappa, V;Chambers, JW;Lograsso, PV;Lai, WT;Ortiz, LA;Phinney, DG |
Contributors: | Institute of Cellular and Systems Medicine |
Abstract: | Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that emerge from bone marrow cultures following long-term (months) expansion in atmospheric oxygen. Herein, we demonstrate that exposure to atmospheric oxygen rapidly induced p53, TOP2A, and BCL2-associated X protein (BAX) expression and mitochondrial reactive oxygen species (ROS) generation in primary mouse MSCs resulting in oxidative stress, reduced cell viability, and inhibition of cell proliferation. Alternatively, procurement and culture in 5% oxygen supported more prolific expansion of the CD45-ve/CD44+ve cell fraction in marrow, produced increased MSC yields following immunodepletion, and supported sustained MSC growth resulting in a 2,300-fold increase in cumulative cell yield by fourth passage. MSCs cultured in 5% oxygen also exhibited enhanced trilineage differentiation. The oxygen-induced stress response was dependent upon p53 since siRNA-mediated knockdown of p53 in wild-type cells or exposure of p53-/- MSCs to atmospheric oxygen failed to induce ROS generation, reduce viability, or arrest cell growth. These data indicate that long-term culture expansion of mouse MSCs in atmospheric oxygen selects for clones with absent or impaired p53 function, which allows cells to escape oxygen-induced growth inhibition. In contrast, expansion in 5% oxygen generates large numbers of primary mouse MSCs that retain sensitivity to atmospheric oxygen, and therefore a functional p53 protein, even after long-term expansion in vitro. |
Date: | 2012-05 |
Relation: | Stem Cells. 2012 May;30(5):975-987. |
Link to: | http://dx.doi.org/10.1002/stem.1069 |
JIF/Ranking 2023: | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1066-5099&DestApp=IC2JCR |
Cited Times(WOS): | https://www.webofscience.com/wos/woscc/full-record/WOS:000302617300018 |
Cited Times(Scopus): | http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84860517151 |
Appears in Collections: | [其他] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
ISI000302617300018.pdf | | 2887Kb | Adobe PDF | 631 | View/Open |
|
All items in NHRI are protected by copyright, with all rights reserved.
|