Hyperthermia has been reported to be an effective cancer treatment modality, as tumor cells are moretemperature-sensitive than their normal counterparts. Since the ambient temperature can be increasedby placing magnetic nanoparticles in an alternating magnetic field it has become of interest to incorpo-rate these magnetic nanoparticles into biodegradable nanofibers for possible endoscopic hyperthermiatreatment of malignant tumors. In this preliminary investigation we have explored various characteris-tics of biodegradable electrospun chitosan nanofibers containing magnetic nanoparticles prepared by dif-ferent methods. These methods included: (1) E-CHS-Fe 3 O 4 , with electrospun chitosan nanofibers directlyimmersed in a magnetic nanoparticle solution; (2) E-CHS-Fe2+, with the electrospun chitosan nanofibersinitially immersed in Fe+2/Fe+3solution, followed by chemical co-precipitation of the magnetic nanopar-ticles. The morphology and crystalline phase of the magnetic electrospun nanofiber matrices were deter-mined by scanning electron microscopy, transmission electron microscopy, selected area electrondiffraction, and X-ray diffraction spectroscopy. The magnetic characteristics were measured using asuperconducting quantum interference device. The heating properties of these magnetic electrospunnanofiber matrices in an alternating magnetic field were investigated at a frequency of 750 kHz and mag-netic intensity of 6.4 kW. In vitro cell incubation experiments indicated that these magnetic electrospunnanofiber matrices are non-cytotoxic and can effectively reduce tumor cell proliferation upon applicationof a magnetic field.