國家衛生研究院 NHRI:Item 3990099045/5967
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 858713      線上人數 : 725
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/5967


    題名: Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins
    作者: Sonaje, K;Lin, KJ;Tseng, MT;Wey, SP;Su, FY;Chuang, EY;Hsu, CW;Chen, CT;Sung, HW
    貢獻者: Institute of Biotechnology and Pharmaceutical Research
    摘要: Recently, we reported a pH-responsive nanoparticle (NP) system shelled with chitosan (CS), which could effectively increase the oral absorption of insulin and produce a hypoglycemic effect, presumably due to the CS-mediated tight junction (TJ) opening. It has been often questioned whether CS can also enhance the absorption of endotoxins present in the small intestine. To address this concern, we studied the effect of CS NPs on the absorption of lipopolysaccharide (LPS), the most commonly found toxin in the gastrointestinal tract. To follow their biodistribution by the single-photon emission computed tomography/computed tomography, LPS and insulin were labeled with 99mTc-pertechnetate (99mTc-LPS) and 123iodine (123I-insulin), respectively. The 99mTc-LPS was ingested 1?h prior to the administration of the 123I-insulin-loaded NPs to mimic the physiological conditions. The confocal and TEM micrographs show that the orally administered CS NPs were able to adhere and infiltrate through the mucus layer, approach the epithelial cells and mediate to open their TJs. The radioactivity associated with LPS was mainly restricted to the gastrointestinal tract, whereas 123I-insulin started to appear in the urinary bladder at 3?h post administration. This observation indicates that the insulin-loaded in CS NPs can traverse across the intestinal epithelium and enter the systemic circulation, whereas LPS was unable to do so, probably because of the charge repulsion between the anionic LPS in the form of micelles and the negatively charged mucus layer. Our in?vivo toxicity study further confirms that the enhancement of paracellular permeation by CS NPs did not promote the absorption of LPS. These results suggest that CS NPs can be used as a safe carrier for oral delivery of protein drugs.
    日期: 2011-11
    關聯: Biomaterials. 2011 Nov;32(33):8712-8721.
    Link to: http://dx.doi.org/10.1016/j.biomaterials.2011.07.086
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0142-9612&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000295858700039
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80052966755
    顯示於類別:[陳炯東] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    NBP2011100501.pdf3073KbAdobe PDF637檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋