國家衛生研究院 NHRI:Item 3990099045/5277
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 909837      線上人數 : 854
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/5277


    題名: Cobra CRISP Functions as an Inflammatory Modulator via a Novel Zn2+- and Heparan Sulfate-dependent Transcriptional Regulation of Endothelial Cell Adhesion Molecules
    作者: Wang, YL;Kuo, JH;Lee, SC;Liu, JS;Hsieh, YC;Shih, YT;Chen, CJ;Chiu, JJ;Wu, WG
    貢獻者: Division of Medical Engineering Research
    摘要: Cysteine-rich secretory proteins (CRISPs) have been identified as a toxin family in most animal venoms with biological functions mainly associated with the ion channel activity of cysteine-rich domain (CRD). CRISPs also bind to Zn<sup>2+</sup> at their N-terminal pathogenesis-related (PR-1) domain, but their function remains unknown. Interestingly, similar the Zn <sup>2+</sup>-binding site exists in all CRISP family, including those identified in a wide range of organisms. Here, we report that the CRISP from Naja atra (natrin) could induce expression of vascular endothelial cell adhesion molecules, i.e. intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin, to promote monocytic cell adhesion in a heparan sulfate (HS)- and Zn<sup>2+</sup>-dependent manner. Using specific inhibitors and small interfering RNAs, the activation mechanisms are shown to involve both mitogen-activated protein kinases and nuclear factor-κB. Biophysical characterization of natrin by using fluorescence, circular dichroism, and x-ray crystallographic methods further reveals the presence of two Zn <sup>2+</sup>-binding sites for natrin. The strong binding site is located near the putative Ser-His-Glu catalytic triad of the N-terminal domain. The weak binding site remains to be characterized, but it may modulate HS binding by enhancing its interaction with long chain HS. Our results strongly suggest that natrin may serve as an inflammatory modulator that could perturb the wound-healing process of the bitten victim by regulating adhesion molecule expression in endothelial cells. Our finding uncovers a new aspect of the biological role of CRISP family in immune response and is expected to facilitate future development of new therapeutic strategy for the envenomed victims.
    日期: 2010-11
    關聯: Journal of Biological Chemistry. 2010 Nov;285(48):37872-37883.
    Link to: http://dx.doi.org/10.1074/jbc.M110.146290
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1083-351X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000284424000077
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78549268188
    顯示於類別:[裘正健] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP78549268188.pdf3195KbAdobe PDF834檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋