English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 852076      Online Users : 1327
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/4894


    Title: Oxidative stress-induced attenuation of thrombospondin-1 expression in primary rat astrocytes
    Authors: Chen, JK;Zhan, YJ;Yang, CS;Tzeng, SF
    Contributors: Center for Nanomedicine Research
    Abstract: Astrocytes, the major glial population in the central nervous system (CNS), can secrete thrombospondin (TSP)-1 that plays the role in synaptogenesis and axonal sprouting during CNS development and tissue repair. However, little is known about the regulation of TSP-1 expression in astrocytes under oxidative stress condition. Here, a hypoxic mimetic reagent, cobalt chloride (CoCl(2)), was used to initiate hypoxia-induced oxidative stress in primary rat astrocytes. CoCl(2) at the concentration range of 0.1-0.5 mM was found to cause no significant cell death in primary rat astrocytes. However, CoCl(2) at 0.2-0.5 mM increased intracellular reactive oxygen species (ROS) levels and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene expression that is known as a hallmark for oxidative damage. We further found that TSP-1 mRNA expression in astrocytes was inhibited dose- and time-dependently by CoCl(2). TSP-1 mRNA levels were increased in CoCl(2)-exposed astrocytes in the presence of the inhibitors (U0126 and PD98059) of mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERK), when compared to that detected in the culture only exposed to CoCl(2). Moreover, the inhibition in TSP-1 mRNA expression by CoCl(2) was blocked by the addition of the potent antioxidant, N-acetylcysteine (NAC). Thus, we conclude that CoCl(2) inhibits TSP-1 mRNA expression in astrocytes via a ROS mechanism possibly involving MAPK/ERK. This inhibition may occur after CNS injury and impair the supportive function of astrocytes on neurite growth in the injured CNS tissues.
    Date: 2011-01
    Relation: Journal of Cellular Biochemistry. 2011 Jan;112(1):59-70.
    Link to: http://dx.doi.org/10.1002/jcb.22732
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0730-2312&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000287216200006
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78651332826
    Appears in Collections:[楊重熙] 期刊論文
    [陳仁焜] 期刊論文

    Files in This Item:

    File Description SizeFormat
    PUB20524210.pdf1277KbAdobe PDF1009View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback