國家衛生研究院 NHRI:Item 3990099045/4891
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 906862      在线人数 : 921
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/4891


    题名: The dimeric transmembrane domain of prolyl dipeptidase DPP-IV contributes to its quaternary structure and enzymatic activities
    作者: Chung, KM;Cheng, JH;Suen, CS;Huang, CH;Tsai, CH;Huang, LH;Chen, YR;Wang, AH;Jiaang, WT;Hwang, MJ;Chen, X
    贡献者: Division of Biotechnology and Pharmaceutical Research;Division of Molecular and Genomic Medicine
    摘要: Dipeptidyl peptidase IV (DPP-IV) is a drug target in the treatment of human type II diabetes. It is a type II membrane protein with a single transmembrane domain (TMD) anchoring the extracellular catalytic domain to the membrane. DPP-IV is active as a dimer with two dimer interacting surfaces located extracellularly. In this study, we demonstrate that the TM of DPP-IV promotes DPP-IV dimerization and rescues monomeric DPP-IV mutants into partial dimers, which is specific and irreplaceable by TMs of other type II membrane proteins. By bioluminescence resonance energy transfer (BRET) and peptide electrophoresis, we found that the TM domain of DPP-IV is dimerized in mammalian cells and in vitro. The TM dimer interaction is very stable, based on our results with TM site-directed mutagenesis. None of the mutations, including the introduction of two prolines, resulted in their complete disruption to monomers. However, these TM proline mutations result in a significant reduction of DPP-IV enzymatic activity, comparable to what is found with mutations near the active site. A systematic analysis of TM structures deposited in the Protein Data Bank showed that prolines in the TM generally produce much bigger kinking angles than occur in nonproline-containing TMs. Thus, the proline-dependent reduction in enzyme activity may result from propagated conformational changes from the TM to the extracellular active site. Our results demonstrate that TM dimerization and conformation contribute significantly to the structure and activity of DPP-IV. Optimal enzymatic activity of DPP-IV requires an optimal interaction of all three dimer interfaces, including its TM.
    日期: 2010-09
    關聯: Protein Science. 2010 Sep;19(9):1627-1638.
    Link to: http://dx.doi.org/10.1002/pro.443
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0961-8368&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000281563000003
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77956389799
    显示于类别:[陳新(2002-2015)] 期刊論文
    [陳怡榮] 期刊論文
    [蔣維棠] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB20572019.pdf451KbAdobe PDF752检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈