國家衛生研究院 NHRI:Item 3990099045/4282
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 914616      在线人数 : 1385
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/4282


    题名: Ca2+-dependent reduction of glutamate aspartate transporter GLAST expression in astrocytes by P2X(7) receptor-mediated phosphoinositide 3-kinase signaling
    作者: Liu, YP;Yang, CS;Chen, MC;Sun, SH;Tzeng, SF
    贡献者: Center for Nanomedicine Research
    摘要: P>Astrocytes are responsible for clearance of extracellular glutamate, primarily through glial-specific glutamate transporter-1 and the Na+-dependent glutamate/aspartate transporter (GLAST). After traumatic injury to the CNS, such as spinal cord injury, persistent release of ATP from damaged neurons and activated glial cells occurs, inducing detrimental and/or beneficial effects via activation of ionotropic (P2XR) and metabotropic purinergic receptors. In this study, we show a decrease in GLAST mRNA in the lesion center and caudal portions at 24 h post-spinal cord injury. In an in vitro system, the ability of astrocytes to take up glutamate and astrocytic GLAST mRNA levels were significantly decreased after exposure to ATP and its P2X(7)R agonist, 2'-3'-O-(4-benzoylbenzoyl)-ATP. ATP- or 2'-3'-O-(4-benzoylbenzoyl)-ATP-induced inhibitory effect on GLAST mRNA expression was blocked by the irreversible P2X(7)R blocker, oxidized ATP, or when P2X(7)R mRNA expression was reduced by the lentivirus-short hairpin RNA knockdown approach. Furthermore, deletion of the GLAST promoter and RNA decay assays showed that P2X(7)R signaling triggered post-transcriptional regulation of GLAST expression via the phosphoinositide 3-kinase cascade. The signaling pathway participating in the P2X(7)R effect on GLAST mRNA expression was identified as a Ca2+-dependent phosphoinositide 3-kinase-phospholipase C gamma involving the inositol 1,4,5-trisphosphate receptor, calcium/calmodulin-dependent kinase II, and protein kinase C. We conclude that P2X(7)R activation by sustained release of ATP in the injured CNS may decrease GLAST mRNA stability via Ca2+-dependent signaling, suggesting that inhibition of P2X(7)R may allow for recovery of astrocytic GLAST function and protect neurons from glutamate-induced excitotoxicity.
    日期: 2010-04
    關聯: Journal of Neurochemistry. 2010 Apr;113(1):213-227.
    Link to: http://dx.doi.org/10.1111/j.1471-4159.2010.06589.x
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0022-3042&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000275183500018
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77749243037
    显示于类别:[楊重熙] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI000275183500018.pdf934KbAdobe PDF506检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈