Background and Purpose-Cysteine-rich proteins (CRPs) 1 and 2 are cytoskeletal LIM-domain proteins thought to be critical for smooth muscle differentiation. Loss of murine CRP2 does not overtly affect smooth muscle differentiation or vascular function; it does exacerbate neointima formation in response to vascular injury. Because CRPs 1 and 2 are coexpressed in the vasculature, we hypothesize that CRPs 1 and 2 act redundantly in smooth muscle differentiation. METHODS AND RESULTS: We generated Csrp1 (gene name for CRP1) null mice by genetic ablation of the Csrp1 gene and found that mice lacking CRP1 are viable and fertile. Smooth muscle-containing tissues from Csrp1-null mice are morphologically indistinguishable from wild-type mice and have normal contractile properties. Mice lacking CRPs 1 and 2 are viable and fertile, ruling out functional redundancy between these 2 highly related proteins as a cause for the lack of an overt phenotype in the Csrp1-null mice. Csrp1-null mice challenged by wire-induced arterial injury display reduced neointima formation, opposite to that seen in Csrp2-null mice, whereas Csrp1/Csrp2 double-null mice produce a wild-type response. CONCLUSIONS: Smooth muscle CRPs are not essential for normal smooth muscle differentiation during development, but may act antagonistically to modulate the smooth muscle response to pathophysiological stress.
Date:
2010-04
Relation:
Arteriosclerosis, Thrombosis, and Vascular Biology. 2010 Apr;30(4):694-701.