國家衛生研究院 NHRI:Item 3990099045/3328
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 915160      在线人数 : 1364
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/3328


    题名: Strategies of development of antiviral agents directed against influenza virus replication
    作者: Hsieh, HP;Hsu, JTA
    贡献者: Division of Biotechnology and Pharmaceutical Research
    摘要: In this review, we will discuss drug design based on proven and potential anti-influenza drug targets including viral hemagglutinin (HA), neuraminidase (NA), M2 ion channel, 3P polymerase complex, and host factors such as kinases. We have summarized influenza inhibitors based on their mode of actions. For instance, included are descriptions of (1) inhibitors of HA cleavage, such as nafamostat, camostat, gabexate, epsilon-aminocapronic acid and aprotinin, (2) inhibitors of fusion and entry, such as benzoquinones and hydroquinones, CL 385319, BMY-27709, stachyflin, and their analogues, (3) inhibitors of viral RNPs/ polymerase/endonuclease, such as T-705, L-735,822, flutimide and their analogues, (4) inhibitors of MEK, such as PD 0325901, CI-1040 and ARRY-142886, and (5) inhibitors of NA such as DANA, FANA, zanamivir, and oseltamivir, etc. Although amantadine and rimantadine are not recommended for treating influenza virus infections because of drug resistance problem, these viral M2 ion channel blockers established a proof-of-concept that the endocytosis of virion into host cells can be a valid drug target because M2 protein is involved in the endocytosis process. The influenza polymerase complex not only catalyzes RNA polymerization but also encodes the "cap snatching" activity. After being exported from the nucleus to the cytoplasm, the newly synthesized vRNPs are assembled into virions at the plasma membrane. The progeny virions will then leave the host cells through the action of NA. The strategies for discovery of small molecule inhibitors of influenza virus replication based on each particular mechanism will be discussed. Finally, the lessons learned from the design of NA inhibitors (NAI) are also included. Many exciting opportunities await the cadre of virologists, medicinal chemists, and pharmacologists to design novel influenza drugs with favorable pharmacological and pharmacokinetic properties to combat this threatening infectious disease. 2007 Bentham Science Publishers Ltd.
    日期: 2007-12
    關聯: Current Pharmaceutical Design. 2007 Dec;13(34):3531-3542.
    Link to: http://dx.doi.org/10.2174/138161207782794248
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1381-6128&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000251547300008
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=36949001617
    显示于类别:[謝興邦] 期刊論文
    [徐祖安] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP36949001617.pdf444KbAdobe PDF488检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈