The aim of this study was to illustrate the phenotypic modification of mitochondrion-rich (MR) cells and Na+/K+-ATPase (INKA) responses, including relative protein abundance, specific activity, and immunolocalization in gills of euryhaline tilapia exposed to deionized water (DW) for one week. The plasma osmolality was not significantly different between tilapia of the local fresh water (LFW) group and DW group. Remodeling of MR cells occurred in DW-exposed fish. After transfer to DW for one week, the relative percentage of subtype-I (wavy-convex) MR cells with apical size ranging from 3 to 9 pm increased and eventually became the dominant MR cell subtype. In DW tilapia gills, relative percentages of lamellar NKA immunoreactive (NKIR) cells among total NKIR cells increased to 29% and led to significant increases in the number of NKIR cells. In addition, the relative protein abundance and specific activity of NKA were significantly higher in gills of the DW-exposed fish. Our study concluded that tilapia require the development of subtype-I MR cells, the presence of lamellar NKIR cells, and enhancement of INKA protein abundance and activity in gills to deal with the challenge of an ion-deficient environment.