Activity of the Axl receptor tyrosine kinase is positively correlated with tumor metastasis; however, its detailed role in the mechanism of tumor invasion is still not completely understood. Here, we show that Axl enhances the expression of matrix metalloproteinase 9 ( MMP-9), required for Axl-mediated invasion both in vitro and in vivo. We found that the highly selective MEK1/2 inhibitors U0126 and PD98059, and the expressed dominant-negative form of extracellular signal-regulated kinase ( ERK), completely block Axl-mediated MMP-9 activation. In contrast, the phosphatidylinositol 3-kinase inhibitor LY294002 and wortmannin had little effect on activation. Interestingly, however, the Axl ligand Gas6 is not involved in Axl-mediated MMP-9 activation. Mutation of Glu59(Axl) and Thr77(Axl) dramatically reduced Gas6-Axl binding but continued to induce MMP-9 activation. In addition, overexpression of Axl-activated ERK and enhanced nuclear factor-kappa B (NF-kappa B) transactivation and brahma-related gene-1 ( Brg-1) translocation. Exposure to the NF-kappa B inhibitor silibinin, which inhibits I kappa B alpha kinase activity, or overexpression of the dominant-negative mutant I kappa B and Brg-1 strikingly inhibited Axl-mediated MMP-9 activation. These data indicate that coordination of ERK signaling and NF-kappa B and Brg-1 activation are indispensable to regulation of Axl-dependent MMP-9 gene transcription. Together with previous data, our results provide a plausible mechanism for Axl-mediated tumor invasion and establish a functional link between the Axl and MMP-9 signaling pathways.