國家衛生研究院 NHRI:Item 3990099045/2575
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 858848      在线人数 : 821
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/2575


    题名: The potential biological mechanisms of arsenic-induced diabetes mellitus
    作者: Tseng, CH
    贡献者: Division of Environmental Health and Occupational Medicine
    摘要: Although epidemiologic studies carried out in Taiwan, Bangladesh, and Sweden have demonstrated a diabetogenic effect of arsenic, the mechanisms remain unclear and require further investigation. This paper reviewed the potential biological mechanisms of arsenic-induced diabetes mellitus based on the current knowledge of the biochemical properties of arsenic. Arsenate can substitute phosphate in the formation of adenosine triphosphate (ATP) and other phosphate intermediates involved in glucose metabolism, which could theoretically slow down the normal metabolism of glucose, interrupt the production of energy, and interfere with the ATP-dependent insulin secretion. However, the concentration of arsenate required for such reaction is high and not physiologically relevant, and these effects may only happen in acute intoxication and may not be effective in subjects chronically exposed to low-dose arsenic. On the other hand, arsenite has high affinity for sulfhydryl groups and thus can form covalent bonds with the disulfide bridges in the molecules of insulin, insulin receptors, glucose transporters (GLUTs), and enzymes involved in glucose metabolism (e.g., pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase). As a result, the normal functions of these molecules can be hampered. However, a direct effect on these molecules caused by arsenite at physiologically relevant concentrations seems unlikely. Recent evidence has shown that treatment of arsenite at lower and physiologically relevant concentrations can stimulate glucose transport, in contrary to an inhibitory effect exerted by phenylarsine oxide (PAO) or by higher doses of arsenite. Induction of oxidative stress and interferences in signal transduction or gene expression by arsenic or by its methylated metabolites are the most possible causes to arsenic-induced diabetes mellitus through mechanisms of induction of insulin resistance and beta cell dysfunction. Recent studies have shown that, in subjects with chronic arsenic exposure, oxidative stress is increased and the expression of tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) is upregulated. Both of these two cytokines have been well known for their effect on the induction of insulin resistance. Arsenite at physiologically relevant concentration also shows inhibitory effect on the expression of peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear hormone receptor important for activating insulin action. Oxidative stress has been suggested as a major pathogenic link to both insulin resistance and beta cell dysfunction through mechanisms involving activation of nuclear factor-kappaB (NF-kappaB), which is also activated by low levels of arsenic. Although without supportive data, superoxide production induced by arsenic exposure can theoretically impair insulin secretion by interaction with uncoupling protein 2 (UCP2), and oxidative stress can also cause amyloid formation in the pancreas, which could progressively destroy the insulin-secreting beta cells. Individual susceptibility with respect to genetics, nutritional status, health status, detoxification capability, interactions with other trace elements, and the existence of other well-recognized risk factors of diabetes mellitus can influence the toxicity of arsenic on organs involved in glucose metabolism and determine the progression of insulin resistance and impaired insulin secretion to a status of persistent hyperglycemia or diabetes mellitus. In conclusions, insulin resistance and beta cell dysfunction can be induced by chronic arsenic exposure. These defects may be responsible for arsenic-induced diabetes mellitus, but investigations are required to test this hypothesis. (C) 2004 Elsevier Inc. All rights reserved.
    关键词: Pharmacology & Pharmacy;Toxicology
    日期: 2004-06-01
    關聯: Toxicology and Applied Pharmacology. 2004 Jun;197(2):67-83.
    Link to: http://dx.doi.org/10.1016/j.taap.2004.02.009
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0041-008X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000221822600001
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=2442465761
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    000221822600001.pdf611KbAdobe PDF619检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈