國家衛生研究院 NHRI:Item 3990099045/16260
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12190/12972 (94%)
Visitors : 1075440      Online Users : 476
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/16260


    Title: Hydroxyl functionalized hexagonal boron nitride quantum dots as nanozyme for pesticides sensing through dual colorimetric and fluorometric platform: A combined experimental and theoretical study
    Authors: Hazarika, C;Neog, G;Roy, E;Gogoi, D;Das, MR;Sarmah, K;Guha, AK;Konwar, R;Matsagar, BM;Wu, KCW
    Contributors: Institute of Biomedical Engineering and Nanomedicine
    Abstract: The Hydroxyl-functionalized hexagonal boron nitride quantum dots (h-BN QDs) were synthesized using a hydrothermal technique in a water medium, exhibiting stability in water for over 90 days. The present study demonstrates two simple fluorescence and colorimetric techniques for sensing organophosphorus (OP) and organochloride (OC) pesticides (atrazine, simazine and chlorpyrifos) in an aqueous medium using hydroxylfunctionalized h-BN QDs. The sensing capability of h-BN QDs for these pesticides was determined to be in the range of 5-10 mu M using both techniques. The hydroxyl groups on the surface of the QDs enhanced dispersibility and enabled peroxidase-like catalytic activity in acidic conditions. The radical generation using hydroxylfunctionalized h-BN QDs in the presence of H2O2 upon 2,2 '-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) oxidation plays a significant role in the peroxidase reaction. The hydrogen bonding and it-it interactions between the pesticide molecules and ABTS can enhance the pesticide sensing performance. The limit of detection (LOD) using ABTS for atrazine, simazine, and chlorpyrifos was 6.11, 6.56, and 2.47 mu M, respectively. Fluorescence sensing, based on a turn ON/OFF mechanism, demonstrated high specificity and sensitivity with LODs of 5.59, 6.45, and 8.08 mu M for the same pesticides. The DFT studies revealed non-covalent bonding, such as hydrogen bonding, it-it interactions between the pesticides and the h-BN QDs, indicating binding affinities and stabilization energies of the complexes which can detect pesticides effectively. Atrazine exhibited higher binding affinity towards h-BN QDs, followed by simazine and chlorpyrifos. The h-BN QDs provide a new insight into bonding with pesticides, enhancing the peroxidase mimetic and fluorescence activity.
    Date: 2024-11-15
    Relation: Chemical Engineering Journal. 2024 Nov 15;500:Article number 156365.
    Link to: http://dx.doi.org/10.1016/j.cej.2024.156365
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1385-8947&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001350405000001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85207934446
    Appears in Collections:[Chia-Wen Wu] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    ISI001350405000001.pdf11427KbAdobe PDF11View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback