國家衛生研究院 NHRI:Item 3990099045/15996
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 966333      線上人數 : 893
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15996


    題名: Using large language model (LLM) to identify high-burden informal caregivers in long-term care
    作者: Chien, SC;Yen, CM;Chang, YH;Chen, YE;Liu, CC;Hsiao, YP;Yang, PY;Lin, HM;Yang, TE;Lu, XH;Wu, IC;Hsu, CC;Chiou, HY;Chung, RH
    貢獻者: Institute of Population Health Sciences;National Center for Geriatrics and Welfare Research
    摘要: BACKGROUND: The rising global elderly population increases the demand for caregiving, yet traditional methods may not fully assess the challenges faced by vital informal caregivers. OBJECTIVE: To investigate the efficacy of Large Language Model (LLM) in detecting overburdened informal caregivers, benchmarking against rule-based and machine learning methods. METHODS: 1,791 eligible informal caregivers from Southern Taiwan and utilized their textual case summary reports for the LLM. We also employed structured questionnaire results for machine learning models. Furthermore, we leveraged the visualization of the LLM's attention mechanisms to enhance our understanding of the model's interpretative capabilities. RESULTS: The LLM achieved an Area Under the Receiver Operating Characteristic (AUROC) curve of 0.84 and an Area Under the Precision-Recall Curve (AUPRC) of 0.70, marking an 8% and 14% improvement over traditional methods. The visualization of the attention mechanism accurately reflected the evaluations of human experts, concentrating on descriptions of high-burden descriptions and the relationships between caregivers and recipients. CONCLUSION: This research demonstrates the notable capability of LLM to accurately identify high-burden caregivers in Long-term Care (LTC) settings. Compared to traditional approaches, LLM offers an opportunity for the future of LTC research and policymaking.
    日期: 2024-10
    關聯: Computer Methods and Programs in Biomedicine. 2024 Oct;255:Article number 108329.
    Link to: http://dx.doi.org/10.1016/j.cmpb.2024.108329
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0169-2607&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001274640800001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85198721629
    顯示於類別:[鍾仁華] 期刊論文
    [邱弘毅] 期刊論文
    [許志成] 期刊論文
    [吳易謙] 期刊論文
    [嚴嘉明] 期刊論文
    [許志成] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    PUB39029418.pdf3549KbAdobe PDF87檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋