Abstract: | The integration of biochips with AI opened up new possibilities and is expected to revolutionize smart healthcare tools within the next five years. The combination of miniaturized, multi-functional, rapid, high-throughput sample processing and sensing capabilities of biochips, with the computational data processing and predictive power of AI, allows medical professionals to collect and analyze vast amounts of data quickly and efficiently, leading to more accurate and timely diagnoses and prognostic evaluations. Biochips, as smart healthcare devices, offer continuous monitoring of patient symptoms. Integrated virtual assistants have the potential to send predictive feedback to users and healthcare practitioners, paving the way for personalized and predictive medicine. This review explores the current state-of-the-art biochip technologies including gene-chips, organ-on-a-chips, and neural implants, and the diagnostic and therapeutic utility of AI-assisted biochips in medical practices such as cancer, diabetes, infectious diseases, and neurological disorders. Choosing the appropriate AI model for a specific biomedical application, and possible solutions to the current challenges are explored. Surveying advances in machine learning models for biochip functionality, this paper offers a review of biochips for the future of biomedicine, an essential guide for keeping up with trends in healthcare, while inspiring cross-disciplinary collaboration among biomedical engineering, medicine, and machine learning fields. |