國家衛生研究院 NHRI:Item 3990099045/15874
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 906936      在线人数 : 868
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15874


    题名: Machine learning models for predicting blood pressure phenotypes by combining multiple polygenic risk scores
    作者: Hrytsenko, Y;Shea, B;Elgart, M;Kurniansyah, N;Lyons, G;Morrison, AC;Carson, AP;Haring, B;Mitchell, BD;Psaty, BM;Jaeger, BC;Gu, CC;Kooperberg, C;Levy, D;Lloyd-Jones, D;Choi, E;Brody, JA;Smith, JA;Rotter, JI;Moll, M;Fornage, M;Simon, N;Castaldi, P;Casanova, R;Chung, RH;Kaplan, R;Loos, RJF;Kardia, SLR;Rich, SS;Redline, S;Kelly, T;O'Connor, T;Zhao, W;Kim, W;Guo, X;Ida Chen, YD;Sofer, T
    贡献者: Institute of Population Health Sciences
    摘要: We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baseline model, where prediction is based on demographic and clinical variables only, and a genetic model, where we also include PRSs. We evaluate the use of a linear versus a non-linear model at both the baseline and the genetic model levels and assess the improvement in performance when incorporating multiple PRSs. We report the ensemble model's performance as percentage variance explained (PVE) on a held-out test dataset. A non-linear baseline model improved the PVEs from 28.1 to 30.1% (SBP) and 14.3% to 17.4% (DBP) compared with a linear baseline model. Including seven PRSs in the genetic model computed based on the largest available GWAS of SBP/DBP improved the genetic model PVE from 4.8 to 5.1% (SBP) and 4.7 to 5% (DBP) compared to using a single PRS. Adding additional 14 PRSs computed based on two independent GWASs further increased the genetic model PVE to 6.3% (SBP) and 5.7% (DBP). PVE differed across self-reported race/ethnicity groups, with primarily all non-White groups benefitting from the inclusion of additional PRSs. In summary, non-linear ML models improves BP prediction in models incorporating diverse populations.
    日期: 2024-05-30
    關聯: Scientific Reports. 2024 May 30;14:Article number 12436.
    Link to: http://dx.doi.org/10.1038/s41598-024-62945-9
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2045-2322&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001236334900044
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85194998457
    显示于类别:[鍾仁華] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB38816422.pdf3266KbAdobe PDF97检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈