國家衛生研究院 NHRI:Item 3990099045/15801
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 966135      線上人數 : 780
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15801


    題名: Wearable strain sensor utilizing the synergistic effect of Ti3C2Tx MXene/AgNW nanohybrid for point-of-care respiratory monitoring
    作者: Kumar, A;Kumar, RKR;Shaikh, MO;Yang, JY;Bharti, AM;Huang, BY;Chang, HL;Lee, DH;Chuang, CH
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Respiratory signals are significant indicators for detecting changes in physiological conditions and early diagnosis of numerous respiratory illnesses. Herein, we have integrated a high-performance strain sensor and portable circuit board (PCB) with personalized interface to develop point-of-care respiratory monitoring device. The ultrasensitive strain sensor utilizes a conductive polymeric nanocomposite that harnesses the synergistic effect of Ti3C2Tx (MXene)/AgNW nanohybrid to develop a wearable device. The wearable device is capable of analysing pulmonary volumes, such as forced volume capacity (FVC) and forced expiratory volume (FEV1), while accurately recognizing various breathing patterns in a resting state (such as normal, forced, and obstructive), as well as during different physical activities. It shows excellent correlation (>93%) with commercial spirometer for measurement of pulmonary parameters. In addition, we present a wireless device for lab rat respiratory monitoring in anaesthetic state. The device is implemented for real-time respiratory monitoring under mild, normal and high anaesthesia doses. The levels of anaesthesia doses including a critical limit can be significantly discriminated by means of breathing frequency and amplitude, which ultimately results in saving their lives. These results demonstrate the practical feasibility of the strain sensing device as wearable electronics for point-of-care respiratory monitoring in humans and other species.
    日期: 2024-04
    關聯: Materials Today Chemistry. 2024 Apr;37:Article number 102024.
    Link to: http://dx.doi.org/10.1016/j.mtchem.2024.102024
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2468-5194&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001227076200001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85189499242
    顯示於類別:[其他] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85189499242.pdf15603KbAdobe PDF68檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋