國家衛生研究院 NHRI:Item 3990099045/15793
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 911587      在线人数 : 923
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15793


    题名: Automated osteoporosis classification and T-score prediction using hip radiographs via deep learning algorithm
    作者: Chen, YP;Chan, WP;Zhang, HW;Tsai, ZR;Peng, HC;Huang, SW;Jang, YC;Kuo, YJ
    贡献者: Institute of Population Health Sciences
    摘要: BACKGROUND: Despite being the gold standard for diagnosing osteoporosis, dual-energy X-ray absorptiometry (DXA) is an underutilized screening tool for osteoporosis. OBJECTIVES: This study proposed and validated a controllable feature layer of a convolutional neural network (CNN) model with a preprocessing image algorithm to classify osteoporosis and predict T-score on the proximal hip region via simple hip radiographs. DESIGN: This was a single-center, retrospective study. METHODS: An image dataset of 3460 unilateral hip images from 1730 patients (age ⩾50 years) was retrospectively collected with matched DXA assessment for T-score for the targeted proximal hip regions to train (2473 unilateral hip images from 1430 patients) and test (497 unilateral hip images from 300 patients) the proposed CNN model. All images were processed with a fully automated CNN model, X1AI-Osteo. RESULTS: The proposed screening tool illustrated a better performance (sensitivity: 97.2%; specificity: 95.6%; positive predictive value: 95.7%; negative predictive value: 97.1%; area under the curve: 0.96) than the open-sourced CNN models in predicting osteoporosis. Moreover, when combining variables, including age, body mass index, and sex as features in the training metric, there was high consistency in the T-score on the targeted hip regions between the proposed CNN model and the DXA (r = 0.996, p < 0.001). CONCLUSION: The proposed CNN model may identify osteoporosis and predict T-scores on the targeted hip regions from simple hip radiographs with high accuracy, highlighting the future application for population-based opportunistic osteoporosis screening with low cost and high adaptability for a broader population at risk. TRIAL REGISTRATION: TMU-JIRB N201909036.
    日期: 2024-04-24
    關聯: Therapeutic Advances in Musculoskeletal Disease. 2024 Apr 24;Article in Press.
    Link to: http://dx.doi.org/10.1177/1759720x241237872
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1759-720X&DestApp=IC2JCR
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85191295507
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB38665415.pdf1248KbAdobe PDF68检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈