Objective: Limited research has explored the long-term effect of reduced PM2.5 exposure on cognitive function. This study aimed to investigate the effects of time-dependent PM2.5 exposure and the interactions of PM2.5 and aging on declines in Mini-Mental State Examination (MMSE) scores, in carriers and non-carriers of the APOE-ε4 allele. Methods: Participants aged over 60 were recruited for this cohort study, undergoing MMSE tests twice from the Taiwan Biobank Program from 2008 to 2020. Participants with dementia or baseline MMSE scores <24 were excluded. Annual PM2.5 levels were estimated using a hybrid kriging/land use regression model with extreme gradient boosting, treated as a time-dependent variable. Generalized estimating equations were used to assess the impacts of repeated PM2.5 on MMSE decline, further stratified by the presence of APOE-ε4 alleles. Results: After follow-up, 290 participants out of the overall 7,000 community residents in the Biobank dataset demonstrated incidences of MMSE declines (<24), with an average MMSE score decline of 1.11 per year. Participants with ε4/ε4 alleles in the APOE gene had significantly 3.68-fold risks of MMSE decline. High levels of PM2.5 across all visits were significantly associated with worsening of scores on the overall MMSE. As annual levels of PM2.5 decreased over time, the impact of PM2.5 on MMSE decline also slowly diminished. Conclusion: Long-term PM2.5 exposure may be associated with increased risk of MMSE decline, despite improvements in ambient PM2.5 levels over time. Validation of these results necessitates a large-scale prospective cohort study with more concise cognitive screening tools.
Date:
2024-09
Relation:
American Journal of Geriatric Psychiatry. 2024 Sep;32(9):1080-1092.