國家衛生研究院 NHRI:Item 3990099045/15544
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 966281      線上人數 : 867
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15544


    題名: Developing a machine learning algorithm to predict the probability of medical staff work mode using human-smartphone interaction patterns: Algorithm development and validation study
    作者: Chen, HH;Lu, HH;Weng, WH;Lin, YH
    貢獻者: Institute of Population Health Sciences
    摘要: BACKGROUND: Traditional methods for investigating work hours rely on an employee's physical presence at the worksite. However, accurately identifying break times at the worksite and distinguishing remote work outside the worksite poses challenges in work hour estimations. Machine learning has the potential to differentiate between human-smartphone interactions at work and off work. OBJECTIVE: In this study, we aimed to develop a novel approach called "probability in work mode," which leverages human-smartphone interaction patterns and corresponding GPS location data to estimate work hours. METHODS: To capture human-smartphone interactions and GPS locations, we used the "Staff Hours" app, developed by our team, to passively and continuously record participants' screen events, including timestamps of notifications, screen on or off occurrences, and app usage patterns. Extreme gradient boosted trees were used to transform these interaction patterns into a probability, while 1-dimensional convolutional neural networks generated successive probabilities based on previous sequence probabilities. The resulting probability in work mode allowed us to discern periods of office work, off-work, breaks at the worksite, and remote work. RESULTS: Our study included 121 participants, contributing to a total of 5503 person-days (person-days represent the cumulative number of days across all participants on which data were collected and analyzed). The developed machine learning model exhibited an average prediction performance, measured by the area under the receiver operating characteristic curve, of 0.915 (SD 0.064). Work hours estimated using the probability in work mode (higher than 0.5) were significantly longer (mean 11.2, SD 2.8 hours per day) than the GPS-defined counterparts (mean 10.2, SD 2.3 hours per day; P<.001). This discrepancy was attributed to the higher remote work time of 111.6 (SD 106.4) minutes compared to the break time of 54.7 (SD 74.5) minutes. CONCLUSIONS: Our novel approach, the probability in work mode, harnessed human-smartphone interaction patterns and machine learning models to enhance the precision and accuracy of work hour investigation. By integrating human-smartphone interactions and GPS data, our method provides valuable insights into work patterns, including remote work and breaks, offering potential applications in optimizing work productivity and well-being.
    日期: 2023-12-29
    關聯: Journal of Medical Internet Research. 2023 Dec 29;25(1):Article number e48834.
    Link to: http://dx.doi.org/10.2196/48834
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1438-8871&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001146574600003
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85181416763
    顯示於類別:[林煜軒] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    PUB38157232.pdf921KbAdobe PDF98檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋