國家衛生研究院 NHRI:Item 3990099045/15526
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 908599      在线人数 : 1024
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15526


    题名: Exposure estimates of PM2.5 using the land-use regression with machine learning and microenvironmental exposure models for elders: Validation and comparison
    作者: Hsu, CY;Hsu, WT;Mou, CY;Wong, PY;Wu, CD;Chen, YC
    贡献者: National Institute of Environmental Health Sciences
    摘要: Estimating short-term exposure to PM2.5 has been achieved for population health studies using the land use regression with machine learning (LUR_ML) and microenvironmental exposure (ME) models. However, there is a lack of clarity regarding the performance of these models in predicting PM2.5 exposure for individuals residing in diverse environments, and the factors influencing the variations in accuracy between these models. This study performed the LUR_ML and ME models to estimate daily exposure concentrations of PM2.5 for elders residing in urban, suburban, rural, and industrial regions in Taiwan. The accuracy of the model predictions was assessed by comparing them with personal PM2.5 monitoring for both overall and regional assessments. The LUR_ML model demonstrated reasonably moderate agreement (R2 = 0.516) overall with personal exposure to PM2.5, while the ME models exhibited relatively higher predictions (R2 = 0.535-0.575) and lower biases. The agreement of PM2.5 predictions varies across regions, particularly in areas with higher exposure contrast. The ME model 1, utilizing region-specific microenvironmental measurements rather than generic data, highlights the potential for accurate prediction of personal PM2.5 exposure. This study contributed to the understanding of variations in prediction accuracy across different regions and support the need for improved exposure models of air pollution.
    日期: 2024-02-01
    關聯: Atmospheric Environment. 2024 Feb 01;318:Article number 120209.
    Link to: http://dx.doi.org/10.1016/j.atmosenv.2023.120209
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1352-2310&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001125593600001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85177881978
    显示于类别:[陳裕政] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI001125593600001.pdf3821KbAdobe PDF109检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈