國家衛生研究院 NHRI:Item 3990099045/15523
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 911152      線上人數 : 954
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15523


    題名: Nanostructured effect on antifouling conducting polymers through interfacial adhesive interaction and protein adsorption
    作者: Lin, CH;Wang, CY;Li, JR;Luo, SC
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Antifouling properties are indispensable for ensuring the efficiency of biomedical applications in biotechnology. Bioinspired antifouling surfaces have undergone significant development. The adhesive interactions of nanopatterns supply localized force-related data. In this study, a precisely defined conducting polymer (CP), poly(3,4-ethylenedioxythiophene) (PEDOT), was enriched with antifouling phosphorylcholine moieties (PEDOT-PC) for comparison with hydroxyl-functionalized PEDOT (PEDOT-OH) to investigate their effects. Well-defined nanopatterned PEDOT films can be precisely created by controlling the electropolymerization process on a polystyrene (PS) monolayer template using a colloidal lithography approach. Electropolymerized PEDOT coatings have emerged as a surface modification strategy for bioelectrodes due to their facile functionalization and fabrication. The patterns are versatile, depending on the sizes of PS beads and electropolymerization conditions. Atomic force microscopy (AFM) allows for the examination of the adhesion effects of periodic nanostructures in aqueous solutions. Real-time and quantitative assessment of adhesion between the AFM tip and the sample was conducted through force-volume mapping. Furthermore, the study involved the examination of protein adsorption behaviors at these interfaces using a quartz crystal microbalance with dissipation (QCM-D), including bovine serum albumin (BSA), cytochrome c (cyt c), lysozyme (LYZ), and C-reactive protein (CRP). AFM probing near the interface revealed that surface morphology induced higher adhesion forces than pristine polymer films, whereas the PEDOT-PC coating exhibited minimal interaction during tip scanning. Additionally, protein adsorption tests indicated that the nanostructures compromised the antifouling properties of PEDOT-PC films, aligning with water contact angle measurements. The periodic structure enhances the energy barrier, disrupting the preservation of a continuous water layer captured by the PC moieties. Our research offers a straightforward approach to creating a nano CP template suitable for various systems. Moreover, it provides a deeper understanding of the physical investigation and the implications of biomolecule responses of the nanostructure effects using AFM and QCM-D.
    日期: 2023-11-08
    關聯: ACS Applied Polymer Materials. 2023 Nov 08;5(12):10105-10115.
    Link to: http://dx.doi.org/10.1021/acsapm.3c01964
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2637-6105&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001121823500001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85179388305
    顯示於類別:[其他] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI001121823500001.pdf5709KbAdobe PDF87檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋