國家衛生研究院 NHRI:Item 3990099045/14973
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 851731      Online Users : 1029
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/14973


    Title: Self-healing of recombinant spider silk gel and coating
    Authors: Wu, SD;Chuang, WT;Ho, JC;Wu, HC;Hsu, SH
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression host. The self-assembled recombinant spider silk hydrogel was obtained through the dialysis process (purity > 85%). The recombinant spider silk hydrogel with a storage modulus of ~250 Pa demonstrated autonomous self-healing and high strain-sensitive properties (critical strain ~50%) at 25 °C. The in situ small-angle X-ray scattering (in situ SAXS) analyses revealed that the self-healing mechanism was associated with the stick-slip behavior of the β-sheet nanocrystals (each of ~2-4 nm) based on the slope variation (i.e., ~-0.4 at 100%/200% strains, and ~-0.9 at 1% strain) of SAXS curves in the high q-range. The self-healing phenomenon may occur through the rupture and reformation of the reversible hydrogen bonding within the β-sheet nanocrystals. Furthermore, the recombinant spider silk as a dry coating material demonstrated self-healing under humidity as well as cell affinity. The electrical conductivity of the dry silk coating was ~0.4 mS/m. Neural stem cells (NSCs) proliferated on the coated surface and showed a 2.3-fold number expansion after 3 days of culture. The biomimetic self-healing recombinant spider silk gel and thinly coated surface may have good potential in biomedical applications.
    Date: 2023-04-12
    Relation: Polymers. 2023 Apr 12;15(8):Article number 1855.
    Link to: http://dx.doi.org/10.3390/polym15081855
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2073-4360&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000980890500001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85154046438
    Appears in Collections:[Shan-Hui Hsu] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    PUB37112001.pdf4110KbAdobe PDF109View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback