國家衛生研究院 NHRI:Item 3990099045/14959
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 911350      線上人數 : 914
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14959


    題名: Improving the brain image resolution of generalized q-sampling MRI revealed by a three-dimensional CNN-based method
    作者: Shin, CY;Chao, YP;Kuo, LW;Chang, YPE;Weng, JC
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: BackgroundUnderstanding neural connections facilitates the neuroscience and cognitive behavioral research. There are many nerve fiber intersections in the brain that need to be observed, and the size is between 30 and 50 nanometers. Improving image resolution has become an important issue for mapping the neural connections non-invasively. Generalized q-sampling imaging (GQI) was used to reveal the fiber geometry of straight and crossing. In this work, we attempted to achieve super-resolution with a deep learning method on diffusion weighted imaging (DWI). Materials and methodsA three-dimensional super-resolution convolutional neural network (3D SRCNN) was utilized to achieve super-resolution on DWI. Then, generalized fractional anisotropy (GFA), normalized quantitative anisotropy (NQA), and the isotropic value of the orientation distribution function (ISO) mapping were reconstructed using GQI with super-resolution DWI. We also reconstructed the orientation distribution function (ODF) of brain fibers using GQI. ResultsWith the proposed super-resolution method, the reconstructed DWI was closer to the target image than the interpolation method. The peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were also significantly improved. The diffusion index mapping reconstructed by GQI also had higher performance. The ventricles and white matter regions were much clearer. ConclusionThis super-resolution method can assist in postprocessing low-resolution images. With SRCNN, high-resolution images can be effectively and accurately generated. The method can clearly reconstruct the intersection structure in the brain connectome and has the potential to accurately describe the fiber geometry on a subvoxel scale.
    日期: 2023-02-16
    關聯: Frontiers in Neuroinformatics. 2023 Feb 16;17:Article number 956600.
    Link to: http://dx.doi.org/10.3389/fninf.2023.956600
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1662-5196&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000941597000001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85149488138
    顯示於類別:[郭立威] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI000941597000001.pdf6401KbAdobe PDF172檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋