國家衛生研究院 NHRI:Item 3990099045/14783
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 915121      在线人数 : 1363
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14783


    题名: An ensemble mixed spatial model in estimating long-term and diurnal variations of PM2.5 in Taiwan
    作者: Wong, PY;Su, HJ;Lung, SCC;Wu, CD
    贡献者: National Institute of Environmental Health Sciences
    摘要: Meteorology, human activities, and other emission sources drive diurnal cyclic patterns of air pollution. Previous studies mainly focused on the variation of PM2.5 concentrations during daytime rather than nighttime. In addition, assessing the spatial variations of PM2.5 in large areas is a critical issue for environmental epidemiological studies to clarify the health effects from PM2.5 exposures. In terms of air pollution spatial modelling, using only a single model might lose information in capturing spatial and temporal correlation between predictors and pollutant levels. Hence, this study aimed to propose an ensemble mixed spatial model that incorporated Kriging interpolation, land-use regression (LUR), machine learning, and stacking ensemble approach to estimate long-term PM2.5 variations for nearly three decades in daytime and nighttime. Three steps of model development were applied: 1) linear based LUR and Hybrid Kriging-LUR were used to determine influential predictors; 2) machine learning algorithms were used to enhance model prediction accuracy; 3) predictions from the selected machine learning models were fitted and evaluated again to build the final ensemble mixed spatial model. The results showed that prediction performance increased from 0.514 to 0.895 for daily, 0.478 to 0.879 for daytime, and 0.523 to 0.878 for nighttime when applying the proposed ensemble mixed spatial model compared with LUR. Results of overfitting test and extrapolation ability test confirmed the robustness and reliability of the developed models. The distance to the nearest thermal power plant, density of soil and pebbles fields, and funeral facilities might affect the variation of PM2.5 levels between daytime and nighttime. The PM2.5 level was higher in daytime compared with nighttime with little difference, revealing the importance of estimating nighttime PM2.5 variations. Our findings also clarified the emission sources in daytime and nighttime, which serve as valuable information for air pollution control strategies establishment.
    日期: 2023-03-25
    關聯: Science of the Total Environment. 2023 Mar 25;866:Article number 161336.
    Link to: http://dx.doi.org/10.1016/j.scitotenv.2022.161336
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0048-9697&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000918766300001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85145658663
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85145658663.pdf5518KbAdobe PDF172检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈