國家衛生研究院 NHRI:Item 3990099045/14746
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 912883      線上人數 : 1168
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14746


    題名: Bioengineering systems for therapeutic and in vitro platforms
    其他題名: Editorial: Bioengineering systems for therapeutic and in vitro platforms
    作者: De Bartolo, L;Piscioneri, A;Stamatialis, D;Lin, FH
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: he works presented in this editorial provide a wide and multidisciplinary overview of the latest strategies for the realization of bioengineered systems for therapeutic and in vitro platforms. These platforms must ensure that the tissue complexity is recapitulated and maintained to provide reliable novel scientific outcomes. The Research Topic covers various strategies for creating permissive environments, where cells can organize according to a proper architecture (Baptista et al., 2021). The use and the realization of alternative cell culture strategies also allows the fine tuning of operational parameters which offers the possibility to mimic tissue physiology and the appropriate cell niche. To accomplish this fundamental task different approaches are applied. The employment of bioactive material promotes cell material interaction at the interface thus boosting the cellular response in terms of adhesion, proliferation and differentiation. Surface functionalization enhances the performance of the tissue engineered construct by tailoring the biomaterial surface with key functional groups and moieties whose presence recapitulate the physiological surrounding. Other approaches involve the development of dynamic systems as bioreactor or chip devices (Piscioneri et al., 2018). The dynamic cell culture microenvironments realized there enhance nutrients transport and waste removal ensuring at the same time a proper supply of gases. The precise set up of these parameters ensure that cells are grown in a very controlled and optimized microenvironment (Morelli et al., 2019). Moreover, dynamic in vitro platform devices are quite versatile systems; indeed, their flexible control of different operational setting pave their use for the replication of cellular and extracellular features of different organs and tissue. The versatility of these multifunctional devices allows the expansion of cell types and therefore the investigation of a wide range of tissue districts, disclosing new insight related to physiological and/or pathological conditions (Morelli et al., 2021). On the basis of these main features these tools can be broadly used for several applications which include the promotion of tissue repair, in vitro diseases modelling and preclinical drug screening of potential therapeutic compounds.
    日期: 2022-11-22
    關聯: Frontiers in Bioengineering and Biotechnology. 2022 Nov 22;10:Article number 1090317.
    Link to: http://dx.doi.org/10.3389/fbioe.2022.1090317
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2296-4185&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000894328700001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85143322828
    顯示於類別:[林峯輝] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI000894328700001.pdf509KbAdobe PDF141檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋