he works presented in this editorial provide a wide and multidisciplinary overview of the latest strategies for the realization of bioengineered systems for therapeutic and in vitro platforms. These platforms must ensure that the tissue complexity is recapitulated and maintained to provide reliable novel scientific outcomes. The Research Topic covers various strategies for creating permissive environments, where cells can organize according to a proper architecture (Baptista et al., 2021). The use and the realization of alternative cell culture strategies also allows the fine tuning of operational parameters which offers the possibility to mimic tissue physiology and the appropriate cell niche. To accomplish this fundamental task different approaches are applied. The employment of bioactive material promotes cell material interaction at the interface thus boosting the cellular response in terms of adhesion, proliferation and differentiation. Surface functionalization enhances the performance of the tissue engineered construct by tailoring the biomaterial surface with key functional groups and moieties whose presence recapitulate the physiological surrounding. Other approaches involve the development of dynamic systems as bioreactor or chip devices (Piscioneri et al., 2018). The dynamic cell culture microenvironments realized there enhance nutrients transport and waste removal ensuring at the same time a proper supply of gases. The precise set up of these parameters ensure that cells are grown in a very controlled and optimized microenvironment (Morelli et al., 2019). Moreover, dynamic in vitro platform devices are quite versatile systems; indeed, their flexible control of different operational setting pave their use for the replication of cellular and extracellular features of different organs and tissue. The versatility of these multifunctional devices allows the expansion of cell types and therefore the investigation of a wide range of tissue districts, disclosing new insight related to physiological and/or pathological conditions (Morelli et al., 2021). On the basis of these main features these tools can be broadly used for several applications which include the promotion of tissue repair, in vitro diseases modelling and preclinical drug screening of potential therapeutic compounds.
Date:
2022-11-22
Relation:
Frontiers in Bioengineering and Biotechnology. 2022 Nov 22;10:Article number 1090317.