國家衛生研究院 NHRI:Item 3990099045/14670
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 966281      線上人數 : 867
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14670


    題名: Model development and validation of personal exposure to PM2.5 among urban elders
    作者: Hsu, WT;Ku, CH;Chen, MJ;Wu, CD;Lung, SCC;Chen, YC
    貢獻者: National Institute of Environmental Health Sciences
    摘要: Indirect measurements through a combination of microenvironment concentrations and personal activity diaries provide a potentially useful alternative for PM2.5 exposure estimates. This study was to optimize a personal exposure model based on spatiotemporal model predictions for PM2.5 exposure in a sub-cohort study. Personal, home indoor, home outdoor, and ambient monitoring data of PM2.5 were conducted for an elderly population in the Taipei city of Taiwan. The proposed microenvironment exposure (ME) models incorporate PM2.5 measurements and individual time-activity information with a generalized estimating equation (GEE) analysis. We evaluated model performance with daily personal PM2.5 exposure based on the coefficient of determination, accuracy, and mean bias error. Ambient and home outdoor measures as exposure surrogates are likely to under- and overestimate personal exposure to PM2.5 in our study population, respectively. Measured and predicted indoor exposures were highly correlated with personal PM2.5 exposure. The awareness of peculiar smells is an important factor that significantly increases personal PM2.5 exposure by 46–70%. The model incorporating home indoor PM2.5 can achieve the highest agreement (R2 = 0.790) with personal exposure and the lowest measurement error. The ME model with the GEE analysis combining home outdoor PM2.5 determined by LUR model with a machine learning technique can improve the prediction (R2 = 0.592) of personal PM2.5 exposure, compared with the prediction of the traditional LUR model (R2 = 0.385).
    日期: 2023-01-01
    關聯: Environmental Pollution. 2023 Jan 1;316(Part 1):Article number 120538.
    Link to: http://dx.doi.org/10.1016/j.envpol.2022.120538
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0269-7491&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000892065400001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85140911569
    顯示於類別:[陳裕政] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85140911569.pdf1102KbAdobe PDF122檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋