Abstract: | (1) Background: Alzheimer's disease (AD) is the most common form of dementia. Increased levels of inflammatory proteins have been observed in brain and plasma samples of AD patients; however, it is not clear if other serum proteins correlate to the development or disease progression of AD. (2) Methods: Micro-Western Array (MWA) is a high-throughput antibody-based proteomics system which allows detection of the expression levels of 24-96 different proteins within 6-30 samples simultaneously. We applied MWA to explore potential serum protein biomarkers correlated to the development and progression of AD by examining the difference in serum protein profile of 31 healthy control (HC), 30 patients with AD and 30 patients' adult children (ACS). (3) Results: Compared to HC, AD and ACS express similar pattern of serum proteins, including higher protein levels of ABCA1, ABCG1, SREBP1 and LXRβ but lower protein levels of ApoD, ApoE, ApoH, c_Myc, COX2 and Hippo-YAP signaling proteins. AD patients had higher serum levels of ABCG1, ApoD, ApoH, COX2, LXRα and YAP, but lower levels of ABCA1, ApoE, c_Myc, LATS1, MST1, MST2, Nanog, NFκB_p50, PPARγ and SREBP2, as compared to ACS. Pearson's correlation analysis revealed that the protein expression level of ApoE, c_Myc, LATS1, MST2, NFκB p50, PPARγ and SREBP1 was negatively correlated to age, while that of ApoE, c_Myc, LATS1, MST1, MST2, Nanog, NFκB p50 and PPARγ was positively correlated to age. (4) Conclusions: We identified a group of serum proteins which may correlate to disease progression of AD and can be potential diagnostic serum protein biomarkers. |