國家衛生研究院 NHRI:Item 3990099045/14377
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 907297      在线人数 : 907
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14377


    题名: GPU-accelerated study of the inertial cavitation threshold in viscoelastic soft tissue using a dual-frequency driving signal
    作者: Filonets, T;Solovchuk, M
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Inertial cavitation thresholds under two forms of ultrasonic excitation (the single- and dual-frequency ultrasound modes) are studied numerically. The Gilmore-Akulichev model coupled with the Zener viscoelastic model is used to model the bubble dynamics. The threshold pressures are determined with two criteria, one based on the bubble radius and the other on the bubble collapse speed. The threshold behavior is investigated for different initial bubble sizes, acoustic signal modes, frequencies, tissue viscosities, tissue elasticities, and all their combinations. Due to the large number of parameters and their many combinations (around 1.5 billion for each threshold criterion), all simulations were executed on graphics processing units to speed up the calculations. We used our own code written in the C++ and CUDA C languages. The results obtained demonstrate that using the dual-frequency signal mode can help to reduce the inertial cavitation threshold (in comparison to the single-frequency mode). The criterion based on the bubble size gives a lower threshold than the criterion using the bubble collapse speed. With an increase of the elasticity, the threshold pressure also increases, whereas changing the viscosity has a very small impact on the optimal threshold, unlike the elasticity. A detailed analysis of the optimal ultrasound frequencies for a dual-frequency driving signal found that for viscosities less than 0.02 Pa·s, the first optimal frequency, in general, is much smaller than the second optimal frequency, which can reach 1 MHz. However, for high viscosities, both optimal frequencies are similar and varied in the range 0.01-0.05 MHz. Overall, this study presents a detailed analysis of inertial cavitation in soft tissue under dual-frequency signal excitation. It may be helpful for the further development of different applications of biomedical ultrasound.
    日期: 2022-08
    關聯: Ultrasonics Sonochemistry. 2022 Aug;88:Article number 106056.
    Link to: http://dx.doi.org/10.1016/j.ultsonch.2022.106056
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1350-4177&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000829491800001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85133288839
    显示于类别:[馬克沁] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB35728380.pdf4056KbAdobe PDF230检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈