國家衛生研究院 NHRI:Item 3990099045/14304
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 915219      線上人數 : 1345
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14304


    題名: Image collection and annotation platforms to establish a multi-source database of oral lesions
    作者: Rajendran, S;Lim, JH;Yogalingam, K;Kallarakkal, TG;Zain, RB;Jayasinghe, RD;Rimal, J;Kerr, AR;Amtha, R;Patil, K;Welikala, RA;Lim, YZ;Remagnino, P;Gibson, J;Tilakaratne, WM;Liew, CS;Yang, YH;Barman, SA;Chan, CS;Cheong, SC
    貢獻者: National Institute of Cancer Research
    摘要: Objective: To describe the development of a platform for image collection and annotation that resulted in a multi-sourced international image dataset of oral lesions to facilitate the development of automated lesion classification algorithms. Materials and Methods: We developed a web-interface, hosted on a web server to collect oral lesions images from international partners. Further, we developed a customised annotation tool, also a web-interface for systematic annotation of images to build a rich clinically labelled dataset. We evaluated the sensitivities comparing referral decisions through the annotation process with the clinical diagnosis of the lesions. Results: The image repository hosts 2474 images of oral lesions consisting of oral cancer, oral potentially malignant disorders and other oral lesions that were collected through MeMoSA (R) UPLOAD. Eight-hundred images were annotated by seven oral medicine specialists on MeMoSA (R) ANNOTATE, to mark the lesion and to collect clinical labels. The sensitivity in referral decision for all lesions that required a referral for cancer management/surveillance was moderate to high depending on the type of lesion (64.3%-100%). Conclusion: This is the first description of a database with clinically labelled oral lesions. This database could accelerate the improvement of AI algorithms that can promote the early detection of high-risk oral lesions.
    日期: 2023-07
    關聯: Oral Diseases. 2023 Jul;29(5):2230-2238.
    Link to: http://dx.doi.org/10.1111/odi.14206
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1354-523X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000787105400001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128858943
    顯示於類別:[楊奕馨] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI000787105400001.pdf1182KbAdobe PDF188檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋