English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 850428      Online Users : 995
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/14278


    Title: Avatar-like body imaging of dermal exposure to melamine in factory workers analyzed by ambient mass spectrometry
    Authors: Hsu, YM;Wu, CF;Huang, MZ;Shiea, J;Pan, CH;Liu, CC;Chen, CC;Wang, YH;Cheng, CM;Wu, MT
    Contributors: Institute of Population Health Sciences
    Abstract: Ambient mass spectrometry thermal desorption-electrospray ionization/mass spectrometry (TD-ESI/MS) can rapidly identify chemicals without pretreatment of biological samples. This study used a rapid semi-quantitative TD-ESI/MS screening technique for the probe skin sampling of melamine workers occupationally exposed to different ambient melamine concentrations to create avatar-like body images, which were then used to study temporal and dynamic changes in nephrotoxic melamine exposure. We enrolled four voluntary melamine workers from one factory, each from one of four worksites. Melamine exposure was highest in manufacturing and molding, followed by grinding and polishing, packing, and administration, the lowest. Skin samples were collected Friday (end-of-shift) and Monday (pre-shift). Early morning one-spot urine samples were also collected right after skin sampling. 2198 probe skin samples were collected and subjected to semi-quantitative TD-ESI/MS analyses of melamine chemical within 40 h. After normalization, converted body image scores revealed exposure to be highest in the manufacturing worker on Friday and lowest in the administrative worker on Monday. The absolute differences (Friday minus Monday) of normalized body image scores were all significantly positive in each individual worker and across all four workers (permutation test, all p-values < 0.002). The slope estimates of the linear regression line between body image scores and urinary melamine levels were 0.81 (p-value = 0.008). We concluded that this fast and non-invasive technique can potentially be used to study temporal and dynamic changes in exposure to occupational hazards. A future study of developing an automatic and reproducible TD-ESI/MS sampling platform is needed.
    Date: 2022-09
    Relation: Chemosphere. 2022 Sep;303(Part 1):Article number 134896.
    Link to: http://dx.doi.org/10.1016/j.chemosphere.2022.134896
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0045-6535&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000806557300006
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130318191
    Appears in Collections:[陳主智] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85130318191.pdf3801KbAdobe PDF151View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback