國家衛生研究院 NHRI:Item 3990099045/14199
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 857830      線上人數 : 835
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14199


    題名: A machine learning classifier for predicting stable MCI patients using gene biomarkers
    作者: Lin, RH;Wang, CC;Tung, CW
    貢獻者: Institute of Biotechnology and Pharmaceutical Research
    摘要: Alzheimer's disease (AD) is a neurodegenerative disorder with an insidious onset and irreversible condition. Patients with mild cognitive impairment (MCI) are at high risk of converting to AD. Early diagnosis of unstable MCI patients is therefore vital for slowing the progression to AD. However, current diagnostic methods are either highly invasive or expensive, preventing their wide applications. Developing low-invasive and cost-efficient screening methods is desirable as the first-tier approach for identifying unstable MCI patients or excluding stable MCI patients. This study developed feature selection and machine learning algorithms to identify blood-sample gene biomarkers for predicting stable MCI patients. Two datasets obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were utilized to conclude 29 genes biomarkers (31 probes) for predicting stable MCI patients. A random forest-based classifier performed well with area under the receiver operating characteristic curve (AUC) values of 0.841 and 0.775 for cross-validation and test datasets, respectively. For patients with a prediction score greater than 0.9, an excellent concordance of 97% was obtained, showing the usefulness of the proposed method for identifying stable MCI patients. In the context of precision medicine, the proposed prediction model is expected to be useful for identifying stable MCI patients and providing medical doctors and patients with new first-tier diagnosis options.
    日期: 2022-04-15
    關聯: International Journal of Environmental Research and Public Health. 2022 Apr 15;19(8):Article number 4839.
    Link to: http://dx.doi.org/10.3390/ijerph19084839
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000785210500001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128177916
    顯示於類別:[童俊維] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI000785210500001.pdf996KbAdobe PDF176檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋