國家衛生研究院 NHRI:Item 3990099045/13813
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 856893      Online Users : 954
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/13813


    Title: Cisd2 slows down liver aging and attenuates age-related metabolic dysfunction in male mice
    Authors: Huang, YL;Shen, ZQ;Huang, CH;Lin, CH;Tsai, TF
    Contributors: Institute of Molecular and Genomic Medicine
    Abstract: The liver plays a pivotal role in mammalian aging. However, the mechanisms underlying liver aging remain unclear. Cisd2 is a pro-longevity gene in mice. Cisd2 mediates lifespan and healthspan via regulation of calcium homeostasis and mitochondrial functioning. Intriguingly, the protein level of Cisd2 is significantly decreased by about 50% in the livers of old male mice. This down-regulation of Cisd2 may result in the aging liver exhibiting non-alcoholic fatty liver disease (NAFLD) phenotype. Here, we use Cisd2 transgenic mice to investigate whether maintaining Cisd2 protein at a persistently high level is able to slow down liver aging. Our study identifies four major discoveries. Firstly, that Cisd2 expression attenuates age-related dysregulation of lipid metabolism and other pathological abnormalities. Secondly, revealed by RNA sequencing analysis, the livers of old male mice undergo extensive transcriptomic alterations, and these are associated with steatosis, hepatitis, fibrosis, and xenobiotic detoxification. Intriguingly, a youthful transcriptomic profile, like that of young 3-month-old mice, was found in old Cisd2 transgenic male mice at 26 months old. Thirdly, Cisd2 suppresses the age-associated dysregulation of various transcription regulators (Nrf2, IL-6, and Hnf4a), which keeps the transcriptional network in a normal pattern. Finally, a high level of Cisd2 protein protects the liver from oxidative stress, and this is associated with a reduction in mitochondrial DNA deletions. These findings demonstrate that Cisd2 is a promising target for the development of therapeutic agents that, by bringing about an effective enhancement of Cisd2 expression, will slow down liver aging.
    Date: 2021-12
    Relation: Aging Cell. 2021 Dec;20(12):Article number e13523.
    Link to: http://dx.doi.org/10.1111/acel.13523
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1474-9718&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000721451000001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85119691450
    Appears in Collections:[Others] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    SCP85119691450.pdf2695KbAdobe PDF191View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback