國家衛生研究院 NHRI:Item 3990099045/13776
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 851927      在线人数 : 1195
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13776


    题名: Betaine prevents and reverses the behavioral deficits and synaptic dysfunction induced by repeated ketamine exposure in mice
    作者: Chen, ST;Hsieh, CP;Lee, MY;Chen, LC;Huang, CM;Chen, HH;Chan, MH
    贡献者: Center for Neuropsychiatric Research;Animal Behavior Core Facility
    摘要: As an N-methyl-D-aspartate (NMDA) receptor inhibitor, ketamine has become a popular recreational substance and currently is used to address treatment-resistant depression. Since heavy ketamine use is associated with persisting psychosis, cognitive impairments, and neuronal damage, the safety of ketamine treatment for depression should be concerned. The nutrient supplement betaine has been shown to counteract the acute ketamine-induced psychotomimetic effects and cognitive dysfunction through modulating NMDA receptors. This study aimed to determine whether the adjunctive or subsequent betaine treatment would improve the enduring behavioral disturbances and hippocampal synaptic abnormality induced by repeated ketamine exposure. Mice received ketamine twice daily for 14 days, either combined with betaine co-treatment or subsequent betaine post-treatment for 7 days. Thereafter, three-chamber social approach test, reciprocal social interaction, novel location/object recognition test, forced swimming test, and head-twitch response induced by serotonergic hallucinogen were monitored. Data showed that the enduring behavioral abnormalities after repeated ketamine exposure, including disrupted social behaviors, recognition memory impairments, and increased depression-like and hallucinogen-induced head-twitch responses, were remarkably improved by betaine co-treatment or post-treatment. Consistently, betaine protected and reversed the reduced hippocampal synaptic activity, such as decreases in field excitatory post-synaptic potentiation (fEPSP), long-term potentiation (LTP), and PSD-95 levels, after repeated ketamine treatment. These results demonstrated that both co-treatment and post-treatment with betaine could effectively prevent and reverse the adverse behavioral manifestations and hippocampal synaptic plasticity after repeated ketamine use, suggesting that betaine can be used as a novel adjunct therapy with ketamine for treatment-resistant depression and provide benefits for ketamine use disorders.
    日期: 2021-12
    關聯: Biomedicine and Pharmacotherapy. 2021 Dec;144:Article number 112369.
    Link to: http://dx.doi.org/10.1016/j.biopha.2021.112369
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0753-3322&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000712632300008
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85117793453
    显示于类别:[陳慧諴] 期刊論文
    [其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85117793453.pdf4248KbAdobe PDF271检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈