國家衛生研究院 NHRI:Item 3990099045/13565
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 916407      在线人数 : 1453
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13565


    题名: Particulate matter causes telomere shortening and increase in cellular senescence markers in human lung epithelial cells
    作者: Chang-Chien, J;Huang, JL;Tsai, HJ;Wang, SL;Kuo, ML;Yao, TC
    贡献者: Institute of Population Health Sciences
    摘要: Exposure to particulate matter (PM) has been associated with DNA damage, but the relationships between PM, telomere length and cellular senescence remain unclear. This study aimed to investigate the effects and potential mechanisms of PM on telomere length and cellular senescence in human lung epithelial cells. Human lung epithelial A549 cells were exposed to PM for 24 h. Cell viability and cytotoxicity were measured by the WST-1 assay and the lactate dehydrogenase release, respectively. Cellular uptake of PM was observed using transmission electron microscopy. Telomere length was measured using qPCR and expressed as T/S ratio. Cell cycle progression was analyzed by flow cytometry. Expression of human telomerase reverse transcriptase (hTERT) and cell cycle regulators was measured using mRNA by qPCR and protein levels by Western blot. Cellular senescence was determined by the expression of senescence-associated β-galactosidase (SA-β-Gal) with fluorescent microscopy and flow cytometry. Exposed to PM at the concentration of 200 μg/ml decreased cell viability and increased LDH levels in culture medium. Remarkably increased uptake of PM, shortening of telomere length, induction of G0/G1 phase arrest, and increased expression of senescence hallmarks were observed after exposure to PM in A549 cells. PM exposure induced upregulation of p21 and downregulation of proliferating cell nuclear antigen (PCNA) and hTERT expression, but no significant change in p53 expression, in A549 cells. Overall, exposure to PM may downregulate hTERT and PCNA through p53-independent induction of p21 expression, leading to telomere shortening, G0/G1 arrest and the onset of cellular senescence in human lung epithelial cells.
    日期: 2021-10-01
    關聯: Ecotoxicology and Environmental Safety. 2021 Oct 1;222:Article number 112484.
    Link to: http://dx.doi.org/10.1016/j.ecoenv.2021.112484
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0147-6513&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000687402900004
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85109084503
    显示于类别:[蔡慧如] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85109084503.pdf2416KbAdobe PDF204检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈