國家衛生研究院 NHRI:Item 3990099045/13551
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12189/12972 (94%)
造访人次 : 954070      在线人数 : 782
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13551


    题名: A novel engineered vascular construct of stem cell-laden 3D-printed PGSA scaffold enhances tissue revascularization
    作者: Jiang, WC;Hsu, WY;Ao-Ieong, WS;Wang, CY;Wang, J;Yet, SF
    贡献者: Institute of Cellular and Systems Medicine
    摘要: Development of transplantable engineered tissue has been hampered by lacking vascular network within the engineered tissue. Three-dimensional (3D) printing has emerged as a new technology with great potential in fabrication and customization of geometric microstructure. In this study, utilizing digital light processing system, we manufactured a recently designed novel 3D architecture scaffold with poly(glycerol sebacate) acrylate (PGSA). Vascular construct was subsequently generated by seeding stem cells within this scaffold. PGSA provided inductive substrate in terms of supporting three-germ layer differentiation of embryonic stem cells (ESCs) and also promoting ESCs-derived vascular progenitor cells (VPCs) differentiation into endothelial cells (ECs). Furthermore, the differentiation efficiency of VPCs into ECs on PGSA was much higher than that on collagen IV or fibronectin. The results from seeding VPCs in the rotating hexagonal PGSA scaffold suggest that this architectural framework is highly efficient for cell engraftment in 3D structures. After long-term suspension culture of the VPCs in scaffold under directed EC differentiation condition, VPC-differentiated ECs were populated in the scaffold and expressed EC markers. Transplantation of the vascular construct in mice resulted in formation of new vascular network and integration of the microvasculature within the scaffold into the existing vasculature of host tissue. Importantly, in a mouse model of wound healing, ECs from the transplanted vascular construct directly contributed to revascularization and enhanced blood perfusion at the injured site. Collectively, this transplantable vascular construct provides an innovative alternative therapeutic strategy for vascular tissue engineering.
    日期: 2021-07-20
    關聯: Biofabrication. 2021 Jul 20;13(4):Article number 045004.
    Link to: http://dx.doi.org/10.1088/1758-5090/ac1259
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1758-5082&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000678347600001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85112383094
    显示于类别:[林秀芳] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB34233298.pdf5527KbAdobe PDF305检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈